Utilizing TGAN and ConSinGAN for Improved Tool Wear Prediction: A Comparative Study with ED-LSTM, GRU, and CNN Models
Abstract
:1. Introduction
- By combining two generative models, conditional SinGAN (ConSinGAN) and tabular GAN (TGAN), the study presents a novel method. This combination of methods solves the problem of limited data, which is a major issue in ML model training, and marks significant progress in the area of TCM.
- To produce more spectrograms, ConSinGAN, one of the most sophisticated DL models, is used. This feature facilitates the development of DL models, which makes it particularly useful in situations when there is a lack of image data.
- In addition to introducing novel generative models, the framework incorporates them with well-known models like CNN, GRU, and ED-LSTM. The intricate and diverse model structure that emerges from this integration is well matched to the intricate complexity of tool wear prediction.
- The proposed approach has been thoroughly tested using publicly available milling datasets from NASA’s Prognostics Center of Excellence Data Repository. The experimental results demonstrate that the integrated approach significantly improves prediction accuracy and establishes a foundation for more effective TCM systems across several industries.
2. Materials and Methods
2.1. Dataset
2.2. Signal Processing and Spectogram
2.3. Data Generation Using GAN
2.3.1. ConsinGAN
2.3.2. Tabular Generative Adversarial Networks (TGAN)
2.4. Feature Extraction
2.5. Deep Learning Models
2.5.1. Gated Recurrent Unit (GRU)
2.5.2. Convolutional Neural Network (CNN)
2.5.3. Encoder Decoder-LSTM (ED-LSTM)
3. Results and Discussion
4. Conclusions
- The CNN model consistently exhibited superior predictive performance for tool wear compared to the GRU and ED-LSTM models during both training and testing phases.
- The 10-fold cross-validation results further underscored the CNN model’s robustness, showing significantly lower RMSE and MAE scores, highlighting its adaptability even as the GRU model presented higher prediction errors than ED-LSTM.
- Depending on the evaluation criteria and the relative importance of predicted versus actual feature vectors, the CNN and GRU models emerge as the most suitable choices for tool wear prediction.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jia, R.; Yue, C.; Liu, Q.; Zhang, Y. Tool Wear Condition Monitoring Method Based on Relevance Vector Machine. Int. J. Adv. Manuf. Technol. 2023, 128, 4721–4734. [Google Scholar] [CrossRef]
- Zheng, G.; Lv, X.; Zhang, X.; Hua, Z. Wear Monitoring of Micro-Milling Tools Based on Improved Siamese Neural Network. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2024. [Google Scholar] [CrossRef]
- Tran, M.-Q.; Doan, H.-P.; Vu, V.Q.; Vu, L.T. Machine Learning and IoT-Based Approach for Tool Condition Monitoring: A Review and Future Prospects. Measurement 2023, 207, 112351. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, C.; Yu, X.; Liu, B.; Quan, Y. Tool Wear Mechanism, Monitoring, and Remaining Useful Life (RUL) Technology Based on Big Data: A Review. SN Appl. Sci. 2022, 4, 232. [Google Scholar] [CrossRef]
- Zhu, K.; Guo, H.; Li, S.; Lin, X. Physics-Informed Deep Learning for Tool Wear Monitoring. IEEE Trans. Ind. Inform. 2024, 20, 524–533. [Google Scholar] [CrossRef]
- Jatakar, K.; Shah, V.; Binali, R.; Salur, E.; Sağlam, H.; Mikolajczyk, T.; Patange, A.D. Monitoring Built-Up Edge, Chipping, Thermal Cracking, and Plastic Deformation of Milling Cutter Inserts through Spindle Vibration Signals. Machines 2023, 11, 790. [Google Scholar] [CrossRef]
- Gouarir, A.; Martínez-Arellano, G.; Terrazas, G.; Benardos, P.; Ratchev, S.J.P.C. In-process tool wear prediction system based on machine learning techniques and force analysis. Procedia CIRP 2018, 77, 501–504. [Google Scholar] [CrossRef]
- Luiz, S.; Juliano, C.H.; Lauro, C.H.; Brandão, L.C. Monitoring of Microturning Process Using Acoustic Emission Signals. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 432. [Google Scholar] [CrossRef]
- Shah, M.; Borade, H.; Sanghavi, V.; Purohit, A.; Wankhede, V.; Vakharia, V. Enhancing Tool Wear Prediction Accuracy Using Walsh–Hadamard Transform, DCGAN and Dragonfly Algorithm-Based Feature Selection. Sensors 2023, 23, 3833. [Google Scholar] [CrossRef]
- Kuntoğlu, M.; Aslan, A.; Sağlam, H.; Pimenov, D.Y.; Giasin, K.; Mikolajczyk, T. Optimization and Analysis of Surface Roughness, Flank Wear and 5 Different Sensorial Data via Tool Condition Monitoring System in Turning of AISI 5140. Sensors 2020, 20, 4377. [Google Scholar] [CrossRef]
- Kuntoğlu, M.; Aslan, A.; Pimenov, D.Y.; Usca, Ü.A.; Salur, E.; Gupta, M.K.; Mikolajczyk, T.; Giasin, K.; Kapłonek, W.; Sharma, S. A Review of Indirect Tool Condition Monitoring Systems and Decision-Making Methods in Turning: Critical Analysis and Trends. Sensors 2021, 21, 108. [Google Scholar] [CrossRef]
- Drouillet, C.; Karandikar, J.; Nath, C.; Journeaux, A.-C.; El Mansori, M.; Kurfess, T.R. Tool Life Predictions in Milling Using Spindle Power with the Neural Network Technique. J. Manuf. Process. 2016, 22, 161–168. [Google Scholar] [CrossRef]
- Ahmed, W.; Ali, M.U.; Parvez, A.; Khan, A.; Zafar, A.; Kerekes, T. A Comparison and Introduction of Novel Solar Panel’s Fault Diagnosis Technique Using Deep-Features Shallow-Classifier through Infrared Thermography. Energies 2023, 16, 1043. [Google Scholar] [CrossRef]
- Vakharia, V.; Gupta, V.K.; Kankar, P.K. A Comparison of Feature Ranking Techniques for Fault Diagnosis of Ball Bearing. Soft Comput. 2015, 20, 1601–1619. [Google Scholar] [CrossRef]
- Jumare, A.I.; Abou-El-Hossein, K.; Goosen, W.E.; Cheng, Y.-C.; Abdulkadir, L.N.; Odedeyi, P.B.; Liman, M.M. Prediction Model for Single-Point Diamond Tool-Tip Wear during Machining of Optical Grade Silicon. Int. J. Adv. Manuf. Technol. 2018, 98, 2519–2529. [Google Scholar] [CrossRef]
- Kurek, J.; Świderska, E.; Szymanowski, K. Tool Wear Classification in Chipboard Milling Processes Using 1-D CNN and LSTM Based on Sequential Features. Appl. Sci. 2024, 14, 4730. [Google Scholar] [CrossRef]
- Wang, W.; Liu, W.; Zhang, Y.; Liu, Y.; Zhang, P.; Jia, Z. Precise Measurement of Geometric and Physical Quantities in Cutting Tools Inspection and Condition Monitoring: A Review. Chin. J. Aeronaut. 2024, 37, 23–53. [Google Scholar] [CrossRef]
- Ni, J.; Liu, X.; Meng, Z.; Cui, Y. Identification of Tool Wear Based on Infographics and a Double-Attention Network. Machines 2023, 11, 927. [Google Scholar] [CrossRef]
- Kumar, D.P.; Muralidharan, V.; Ravikumar, S. Histogram as Features for Fault Detection of Multi Point Cutting Tool—A Data Driven Approach. Appl. Acoust. 2022, 186, 108456. [Google Scholar] [CrossRef]
- Zhou, C.; Guo, K.; Sun, J. An Integrated Wireless Vibration Sensing Tool Holder for Milling Tool Condition Monitoring with Singularity Analysis. Measurement 2021, 174, 109038. [Google Scholar] [CrossRef]
- Manwar, A.; Varghese, A.; Bagri, S.; Suri, A. Online Tool Condition Monitoring in Micromilling Using LSTM. J. Intell. Manuf. 2023, 1–21. [Google Scholar] [CrossRef]
- Abdeltawab, A.; Xi, Z.; Longjia, Z. Enhanced Tool Condition Monitoring Using Wavelet Transform-Based Hybrid Deep Learning Based on Sensor Signal and Vision System. Int. J. Adv. Manuf. Technol. 2024, 132, 5111–5140. [Google Scholar] [CrossRef]
- Dahe, S.V.; Manikandan, G.S.; Jegadeeshwaran, R.; Sakthivel, G.; Lakshmipathi, J. Tool Condition Monitoring Using Random Forest and FURIA through Statistical Learning. Mater. Today Proc. 2021, 46, 1161–1166. [Google Scholar] [CrossRef]
- Doukas, C.; Stavropoulos, P.; Papacharalampopoulos, A.; Foteinopoulos, P.; Vasiliadis, E.; Chryssolouris, G. On the Estimation of Tool-Wear for Milling Operations Based on Multi-Sensorial Data. Procedia CIRP 2013, 8, 415–420. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, W.; Hu, X.; Liu, Y. A Hybrid Information Model Based on Long Short-Term Memory Network for Tool Condition Monitoring. J. Intell. Manuf. 2020, 31, 1497–1510. [Google Scholar] [CrossRef]
- Zhao, R.; Yan, R.; Wang, J.; Mao, K. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks. Sensors 2017, 17, 273. [Google Scholar] [CrossRef]
- Marinescu, I.; Axinte, D. A Critical Analysis of the Effectiveness of Acoustic Emission Signals to Detect Tool and Workpiece Malfunctions in Milling Operations. Int. J. Mach. Tools Manuf. 2008, 48, 1148–1160. [Google Scholar] [CrossRef]
- Kulandaivelu, P.; Kumar, P.S.; Sundaram, S. Wear Monitoring of Single Point Cutting Tool Using Acoustic Emission Techniques. Sadhana 2013, 38, 211–234. [Google Scholar] [CrossRef]
- Molitor, D.A.; Kubik, C.; Becker, M.; Hetfleisch, R.H.; Lyu, F.; Groche, P. Towards High-Performance Deep Learning Models in Tool Wear Classification with Generative Adversarial Networks. J. Mater. Process. Technol. 2022, 302, 117484. [Google Scholar] [CrossRef]
- Agogino, A.; Goebel, K. Mill Data Set. BEST Lab, UC Berkeley; NASA Ames Prognostics Data Repository, NASA Ames, Moffett Field, CA. 2007. Available online: https://ti.arc.nasa.gov/project/prognostic-data-repository (accessed on 20 April 2024).
- Dave, V.; Thakker, H.; Vakharia, V. Fault Identification of Ball Bearings Using Fast Walsh Hadamard Transform, LASSO Feature Selection, and Random Forest Classifier. FME Trans. 2022, 50, 202–210. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. arXiv 2014, arXiv:1406.2661. [Google Scholar] [CrossRef]
- Suthar, V.; Vakharia, V.; Patel, V.K.; Shah, M. Detection of Compound Faults in Ball Bearings Using Multiscale-SinGAN, Heat Transfer Search Optimization, and Extreme Learning Machine. Machines 2022, 11, 29. [Google Scholar] [CrossRef]
- Hinz, T.; Wang, M.; Wermter, S. Improved Techniques for Training Single-Image GANs. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Virtual, 5–9 January 2021. [Google Scholar] [CrossRef]
- Das, V.; Dandapat, S.; Bora, P.K. A Data-Efficient Approach for Automated Classification of OCT Images Using Generative Adversarial Network. IEEE Sens. Lett. 2020, 4, 1–4. [Google Scholar] [CrossRef]
- Bourou, S.; El Saer, A.; Velivassaki, T.-H.; Voulkidis, A.; Zahariadis, T. A Review of Tabular Data Synthesis Using GANs on an IDS Dataset. Information 2021, 12, 375. [Google Scholar] [CrossRef]
- Alshantti, A.; Varagnolo, D.; Rasheed, A.; Rahmati, A.; Westad, F. CasTGAN: Cascaded Generative Adversarial Network for Realistic Tabular Data Synthesis. IEEE Access 2024, 12, 13213–13232. [Google Scholar] [CrossRef]
- Vinay, V.; Kumar, G.V.; Kumar, K.P. Application of Chi-Square Feature Ranking Technique and Random Forest Classifier for Fault Classification of Bearing Faults. In Proceedings of the 22nd International Congress on Sound and Vibration, Florence, Italy, 12–16 July 2015. [Google Scholar]
- Jiang, C.; Sun, X.; Dai, Y.; Zhang, Y.; Chen, D.; Li, Y.; Tang, Y. EEG Emotion Recognition Employing RGPCN-BiGRUAM: ReliefF-Based Graph Pooling Convolutional Network and BiGRU Attention Mechanism. Electronics 2024, 13, 2530. [Google Scholar] [CrossRef]
- Singh, N.; Sabrol, H. Convolutional Neural Networks: An Extensive Arena of Deep Learning. A Comprehensive Study. Arch. Comput. Methods Eng. 2021, 28, 4755–4780. [Google Scholar] [CrossRef]
- Jin, X.-B.; Zheng, W.-Z.; Kong, J.-L.; Wang, X.-Y.; Zuo, M.; Zhang, Q.-C.; Lin, S. Deep-Learning Temporal Predictor via Bidirectional Self-Attentive Encoder–Decoder Framework for IoT-Based Environmental Sensing in Intelligent Greenhouse. Agriculture 2021, 11, 802. [Google Scholar] [CrossRef]
- Du, S.; Li, T.; Yang, Y.; Gong, X.; Horng, S.-J. An LSTM Based Encoder-Decoder Model for Multi-Step Traffic Flow Prediction. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019. [Google Scholar] [CrossRef]
- Hanachi, H.; Yu, W.; Kim, I.Y.; Liu, J.; Mechefske, C.K. Hybrid Data-Driven Physics-Based Model Fusion Framework for Tool Wear Prediction. Int. J. Adv. Manuf. Technol. 2018, 101, 2861–2872. [Google Scholar] [CrossRef]
- Yu, W.; Kim, I.Y.; Mechefske, C. Remaining Useful Life Estimation Using a Bidirectional Recurrent Neural Network Based Autoencoder Scheme. Mech. Syst. Signal Process. 2019, 129, 764–780. [Google Scholar] [CrossRef]
- Kumar, S.; Kolekar, T.; Kotecha, K.; Patil, S.; Bongale, A. Performance Evaluation for Tool Wear Prediction Based on Bi-Directional, Encoder–Decoder and Hybrid Long Short-Term Memory Models. Int. J. Qual. Reliab. Manag. 2022, 39, 1551–1576. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Depth of cut | 1.5 mm & 0.75 mm |
Feed Rate | 0.5 mm/rev & 0.25 mm/rev |
Material of Workpiece | Cast Iron & Stainless Steel J45 |
Case | Run | DOC (mm) | Feed (mm/rev) | Flank Wear (mm) |
---|---|---|---|---|
1 | 1 | 1.5 | 0.5 | 0 |
1 | 2 | 1.5 | 0.5 | 0.28 |
1 | 3 | 1.5 | 0.5 | 0.44 |
2 | 1 | 0.75 | 0.5 | 0.08 |
2 | 2 | 0.75 | 0.5 | 0.22 |
2 | 3 | 0.75 | 0.5 | 0.55 |
3 | 1 | 0.75 | 0.25 | 0 |
3 | 2 | 0.75 | 0.25 | 0.23 |
3 | 3 | 0.75 | 0.25 | 0.55 |
4 | 1 | 1.5 | 0.25 | 0.08 |
4 | 2 | 1.5 | 0.25 | 0.31 |
4 | 3 | 1.5 | 0.25 | 0.49 |
Sr. No. | Feature | Sr. No. | Feature |
---|---|---|---|
1 | Root Mean Square Error (RMSE) | 7 | Variance |
2 | Peak Signal-to-Noise Ratio (PSNR) | 8 | Mean |
3 | Mean Absolute Error (MAE) | 9 | Standard Deviation (STD) |
4 | Entropy | 10 | Mean Squared Error |
5 | Structural Similarity Index Measure (SSIM) | 11 | Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS) |
6 | Kurtosis |
Parameter | GRU | CNN | EDLSTM |
---|---|---|---|
Number of Layers | 2 layers (1 GRU layer, 1 Dense layer) | 7 layers (2 Conv1D layers, 2MaxPoolind, 1 Flatten layer, 2 Dense layers) | 4 layers (2 LSTM layers, 1 Repeat Vector layer, 1 Time Distributed Dense layer) |
Units |
|
|
|
Layer Types | GRU, Dense | Conv1D, MaxPooling1D, Flatten, Dense | LSTM, Repeat Vector, Time Distributed |
Activation Functions |
|
|
|
Optimizers | RMSprop | Adam | Adam |
Loss Function | Mean Absolute Error | Mean Squared Error | Mean Squared Error |
Learning Rate | 0.001 | 0.001 | 0.001 |
Batch Size | 32 | 32 | 32 |
Epochs | 100 | 100 | 100 |
RMSE | PSNR | MAE | Entropy | |||||
---|---|---|---|---|---|---|---|---|
Original Feature | Generated Feature | Original Feature | Generated Feature | Original Feature | Generated Feature | Original Feature | Generated Feature | |
Mean | 18.33 | 20.31 | 26.06 | 25.44 | 133.90 | 133.46 | 4.89 | 4.57 |
Std | 25.47 | 27.66 | 5.66 | 6.12 | 9.80 | 10.51 | 2.13 | 2.37 |
Min | 9.18 | 9.39 | 7.92 | 7.92 | 109.61 | 111.45 | 0.00 | 0.00 |
25 | 9.55 | 9.60 | 27.58 | 27.36 | 130.19 | 129.16 | 5.76 | 5.73 |
50 | 10.09 | 10.32 | 28.05 | 27.80 | 133.84 | 133.54 | 5.83 | 5.81 |
75 | 10.65 | 10.84 | 28.53 | 28.46 | 137.89 | 137.79 | 5.89 | 5.88 |
Max | 102.47 | 102.48 | 28.87 | 28.66 | 153.09 | 153.09 | 6.00 | 5.95 |
SSIM | Kurtosis | Variance | Mean | |||||
---|---|---|---|---|---|---|---|---|
Original Feature | Generated Feature | Original Feature | Generated Feature | Original Feature | Generated Feature | Original Feature | Generated Feature | |
Mean | 0.64 | 0.64 | 28.18 | 31.01 | 224.43 | 207.27 | 175.21 | 173.73 |
Std | 0.03 | 0.032 | 64.01 | 71.53 | 99.38 | 109.64 | 21.25 | 23.24 |
Min | 0.58 | 0.58 | 0.00 | 0.00 | 0.00 | −1.52 | 105.00 | 105.00 |
25 | 0.62 | 0.62 | 9.07 | 9.24 | 249.34 | 238.34 | 179.28 | 179.22 |
50 | 0.63 | 0.63 | 9.83 | 10.00 | 265.90 | 260.80 | 181.21 | 181.04 |
75 | 0.65 | 0.65 | 10.66 | 10.85 | 277.44 | 275.10 | 182.86 | 182.66 |
Max | 0.73 | 0.73 | 246.10 | 247.71 | 305.55 | 288.68 | 186.00 | 185.83 |
STD | MSE | ERGAS | ||||
---|---|---|---|---|---|---|
Original Feature | Generated Feature | Original Feature | Generated Feature | Original Feature | Generated Feature | |
Mean | 13.88 | 13.03 | 984.67 | 1081.54 | 2159.75 | 2392.29 |
Std | 5.63 | 6.21 | 2869.89 | 3133.09 | 3168.95 | 3445.82 |
Min | 0.00 | 0.00 | 84.28 | 86.90 | 1016.80 | 1039.01 |
25 | 15.79 | 15.47 | 91.24 | 90.81 | 1072.50 | 1071.69 |
50 | 16.31 | 16.21 | 101.84 | 103.52 | 1137.42 | 1174.85 |
75 | 16.66 | 16.60 | 113.45 | 116.26 | 1254.73 | 1267.75 |
Max | 17.48 | 17.04 | 10,500.86 | 10,500.86 | 12,643.56 | 12,643.56 |
Reference | Sensor | Algorithm | RMSE |
---|---|---|---|
Hanachi et al. [43] | Current sensors | Sipos | 0.42 |
Adaptive neuro-fuzzy inference system (ANFIS) | 0.56 | ||
Regularized particle filter (RPF) | 0.22 | ||
Yu et al. [44] | All sensors | Bi Directional LSTM | 7.14 |
BiLSTM-ED2 | 11.27 | ||
Kumar et al. [45] | Vibration sensors | Vanilla LSTM | 0.1129 |
Bidirectional LSTM | 0.0982 | ||
EDLSTM | 0.0586 | ||
Hybrid LSTM | 0.0364 | ||
Proposed work | Acoustic sensors | Original Data | |
CNN | 0.0625 | ||
GRU | 0.0623 | ||
EDLSTM | 0.2049 | ||
TGAN Data | |||
CNN | 0.027 | ||
GRU | 0.039 | ||
ED-LSTM | 0.190 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, M.; Borade, H.; Dave, V.; Agrawal, H.; Nair, P.; Vakharia, V. Utilizing TGAN and ConSinGAN for Improved Tool Wear Prediction: A Comparative Study with ED-LSTM, GRU, and CNN Models. Electronics 2024, 13, 3484. https://doi.org/10.3390/electronics13173484
Shah M, Borade H, Dave V, Agrawal H, Nair P, Vakharia V. Utilizing TGAN and ConSinGAN for Improved Tool Wear Prediction: A Comparative Study with ED-LSTM, GRU, and CNN Models. Electronics. 2024; 13(17):3484. https://doi.org/10.3390/electronics13173484
Chicago/Turabian StyleShah, Milind, Himanshu Borade, Vipul Dave, Hitesh Agrawal, Pranav Nair, and Vinay Vakharia. 2024. "Utilizing TGAN and ConSinGAN for Improved Tool Wear Prediction: A Comparative Study with ED-LSTM, GRU, and CNN Models" Electronics 13, no. 17: 3484. https://doi.org/10.3390/electronics13173484
APA StyleShah, M., Borade, H., Dave, V., Agrawal, H., Nair, P., & Vakharia, V. (2024). Utilizing TGAN and ConSinGAN for Improved Tool Wear Prediction: A Comparative Study with ED-LSTM, GRU, and CNN Models. Electronics, 13(17), 3484. https://doi.org/10.3390/electronics13173484