Optimizing Microgrid Planning for Renewable Integration in Power Systems: A Comprehensive Review
Abstract
:1. Introduction
2. Literature Review Methodology
2.1. Literature Search Strategy
2.2. Study Selection Process
2.2.1. Identification Stage
2.2.2. Screening Stage
2.2.3. Eligibility and Inclusion Stage
- is the i-th criterion (five-level Likert’s scale)
- is the is the i-th weighting factor (from 0 to 1)
2.2.4. Synthesis Stage
- Microgrid Planning and Optimization
- Modeling and Simulation
- Energy Storage Technologies
- Power Systems Operation and Control
- Cycle Counting and Data Analysis
- Urban and Rural Energy Solutions
3. Results and Discussions
3.1. Microgrid Planning and Optimization
3.1.1. Historical Narrative
3.1.2. Innovative Methods
3.1.3. Futuristic Vision
3.2. Modeling and Simulation
3.2.1. Introduction
3.2.2. Creative Case Studies
3.2.3. Visual Innovations
3.3. Energy Storage and Battery Technologies
3.3.1. Introduction
3.3.2. Innovation Stories
3.3.3. Imaginative Future
3.4. Power System Operation and Control
3.4.1. Introduction
3.4.2. Challenges and Solutions Narrative
3.4.3. End-User Perspective
3.5. Cycle Counting and Data Analysis
3.5.1. Introduction
3.5.2. Data Narrative
3.5.3. Innovations in Analysis
3.6. Urban and Rural Energy Solutions
3.6.1. Introduction
3.6.2. Community Stories
3.6.3. Local Innovations
3.6.4. Holistic Vision
3.7. Quantitative Analysis of Optimization Strategies
3.8. Comprehensive Analysis of Microgrid Planning Components
3.8.1. Renewable Energy Source Selection and Sizing
3.8.2. Energy Storage System Selection and Sizing
3.8.3. Microgrid Topologies and Load Forecasting
3.8.4. Integration of Emerging Technologies and Sector Coupling
3.8.5. Optimization Methodologies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ton, D.T.; Smith, M.A. The U.S. Department of Energy’s Microgrid Initiative. Electr. J. 2012, 25, 84–94. [Google Scholar] [CrossRef]
- Martin-Martínez, F.; Sánchez-Miralles, A.; Rivier, M. A literature review of microgrids: A functional layer based classification. Renew. Sustain. Energy Rev. 2016, 62, 1133–1153. [Google Scholar] [CrossRef]
- Bunker, K.; Hawley, K.; Morris, J. Renewable Microgrids: Profiles from Islands and Remote Communities Across the Globe; Rocky Mountain Institute: Prescott, AZ, USA, 2015; Available online: https://rmi.org/wp-content/uploads/2017/04/Islands_Microgrid_Profiles_Islands_Global_Remote_Communities_CaseStudy_2015.pdf (accessed on 7 August 2024).
- Olivares, D.E.; Mehrizi-Sani, A.; Etemadi, A.H.; Cañizares, C.A.; Iravani, R.; Kazerani, M.; Hajimiragha, A.H.; Gomis-Bellmunt, O.; Saeedifard, M.; Palma-Behnke, R.; et al. Trends in microgrid control. IEEE Trans. Smart Grid 2014, 5, 1905–1919. [Google Scholar] [CrossRef]
- Pang, K.; Zhou, J.; Tsianikas, S.; Coit, D.W.; Ma, Y. Long-term microgrid expansion planning with resilience and environmental benefits using deep reinforcement learning. Renew. Sustain. Energy Rev. 2024, 191, 114068. [Google Scholar] [CrossRef]
- Carvallo, C.; Jalil-Vega, F.; Moreno, R. A multi-energy multi-microgrid system planning model for decarbonisation and decontamination of isolated systems. Appl. Energy 2023, 343, 121143. [Google Scholar] [CrossRef]
- Sabzpoosh Saravi, V.; Kalantar, M.; Anvari-Moghaddam, A. A cooperative resilience-oriented planning framework for integrated distribution energy systems and multi-carrier energy microgrids considering energy trading. Sustain. Cities Soc. 2024, 100, 105039. [Google Scholar] [CrossRef]
- Amini, F.; Ghassemzadeh, S.; Rostami, N.; Tabar, V.S. A stochastic two-stage microgrid formation strategy for enhancing distribution network resilience against earthquake event incorporating distributed energy resources, parking lots and responsive loads. Sustain. Cities Soc. 2024, 101, 105191. [Google Scholar] [CrossRef]
- Gharehveran, S.S.; Ghassemzadeh, S.; Rostami, N. Two-stage resilience-constrained planning of coupled multi-energy microgrids in the presence of battery energy storages. Sustain. Cities Soc. 2022, 83, 103952. [Google Scholar] [CrossRef]
- Goyal, M.; Ghosh, A. Microgrids interconnection to support mutually during any contingency. Sustain. Energy Grids Netw. 2016, 6, 100–108. [Google Scholar] [CrossRef]
- Hemmati, R.; Saboori, H.; Siano, P. Coordinated short-term scheduling and long-term expansion planning in microgrids incorporating renewable energy resources and energy storage systems. Energy 2017, 134, 699–708. [Google Scholar] [CrossRef]
- Khayatian, A.; Barati, M.; Lim, G.J. Integrated Microgrid Expansion Planning in Electricity Market With Uncertainty. IEEE Trans. Power Syst. 2018, 33, 3634–3643. [Google Scholar] [CrossRef]
- Pecenak, Z.K.; Stadler, M.; Fahy, K. Efficient multi-year economic energy planning in microgrids. Appl. Energy 2019, 255, 113771. [Google Scholar] [CrossRef]
- Fioriti, D.; Poli, D.; Duenas-Martinez, P.; Perez-Arriaga, I. Multi-year stochastic planning of off-grid microgrids subject to significant load growth uncertainty: Overcoming single-year methodologies. Electr. Power Syst. Res. 2021, 194, 107053. [Google Scholar] [CrossRef]
- Hajipour, E.; Bozorg, M.; Fotuhi-Firuzabad, M. Stochastic Capacity Expansion Planning of Remote Microgrids With Wind Farms and Energy Storage. IEEE Trans. Sustain. Energy 2015, 6, 491–498. [Google Scholar] [CrossRef]
- Hemmati, R. Capacity expansion planning in microgrids. In Energy Management in Homes and Residential Microgrids; Elsevier: Amsterdam, The Netherlands, 2024; pp. 141–200. [Google Scholar] [CrossRef]
- Che, L.; Zhang, X.; Shahidehpour, M.; Alabdulwahab, A.; Abusorrah, A. Optimal interconnection planning of community microgrids with renewable energy sources. IEEE Trans. Smart Grid 2015, 8, 1054–1063. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Rev. Esp. Cardiol. 2021, 74, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Fernández, F.J.V.; Manzano, F.S.; Márquez, J.M.A.; Godoy, A.J.C.; Fernández, F.J.V.; Segura Manzano, F.; Andújar Márquez, J.M.; Calderón Godoy, A.J. Extended Model Predictive Controller to Develop Energy Management Systems in Renewable Source-Based Smart Microgrids with Hydrogen as Backup. Theoretical Foundation and Case Study. Sustainability 2020, 12, 8969. [Google Scholar] [CrossRef]
- Mohammad, S.S.; Iqbal, S.J. Hydrogen technology supported solar photovoltaic-based microgrid for urban apartment buildings: Techno-economic analysis and optimal design. Energy Convers. Manag. 2024, 302, 118146. [Google Scholar] [CrossRef]
- Mohseni, S.; Brent, A.C.; Burmester, D.; Mohseni, S.; Brent, A.C.; Burmester, D. Off-Grid Multi-Carrier Microgrid Design Optimisation: The Case of Rakiura–Stewart Island, Aotearoa–New Zealand. Energies 2021, 14, 6522. [Google Scholar] [CrossRef]
- Mansur; Manjang, S.; Arief, A.; Akil, Y.S. Optimal hybrid renewable energy generation planning based on BSG-starcraft radius particle swarm optimization. Prz. Elektrotech. 2023, 99, 82–87. [Google Scholar] [CrossRef]
- Murty, V.V.V.S.N.; Kumar, A. Optimal Energy Management and Techno-economic Analysis in Microgrid with Hybrid Renewable Energy Sources. J. Mod. Power Syst. Clean Energy 2020, 8, 929–940. [Google Scholar] [CrossRef]
- Yang, P.; Yu, L.; Wang, X.; Zheng, P.; Lv, X.; Yue, J. Multi-objective planning and optimization of microgrid lithium iron phosphate battery energy storage system consider power supply status and CCER transactions. Int. J. Hydrogen Energy 2022, 47, 29925–29944. [Google Scholar] [CrossRef]
- Liang, L.; Zhao, X.; Huang, W.; Sun, L.; Wang, Z.; Chen, F. Collaborative capacity planning method of wind-photovoltaic-storage equipment in microgrids considering different energy selling incomes. Front. Energy Res. 2023, 11, 1264986. [Google Scholar] [CrossRef]
- Das, D.; Manojkumar, R.; Kumar, C.; Ganguly, S. Power Loss Minimization in Smart Transformer Enabled Low Voltage Islanded Meshed Hybrid Microgrid. IEEE Access 2022, 10, 123259–123270. [Google Scholar] [CrossRef]
- Tan, B.; Chen, H. Stochastic Multi-Objective Optimized Dispatch of Combined Cooling, Heating, and Power Microgrids Based on Hybrid Evolutionary Optimization Algorithm. IEEE Access 2019, 7, 176218–176232. [Google Scholar] [CrossRef]
- Shi, Z.; Liang, H.; Huang, S.; Dinavahi, V. Distributionally Robust Chance-Constrained Energy Management for Islanded Microgrids. IEEE Trans. Smart Grid 2018, 10, 2234–2244. [Google Scholar] [CrossRef]
- Elkamel, M.; Rabelo, L.; Sarmiento, A.T.; Elkamel, M.; Rabelo, L.; Sarmiento, A.T. Agent-Based Simulation and Micro Supply Chain of the Food–Energy–Water Nexus for Collaborating Urban Farms and the Incorporation of a Community Microgrid Based on Renewable Energy. Energies 2023, 16, 2614. [Google Scholar] [CrossRef]
- Hematian, H.; Askari, M.T.; Ahmadi, M.A.; Sameemoqadam, M.; Nik, M.B. Robust Optimization for Microgrid Management With Compensator, EV, Storage, Demand Response, and Renewable Integration. IEEE Access 2024, 12, 73413–73425. [Google Scholar] [CrossRef]
- Peng, Y.; Jiang, W.; Wei, X.; Pan, J.; Kong, X.; Yang, Z.; Peng, Y.; Jiang, W.; Wei, X.; Pan, J.; et al. Microgrid Optimal Dispatch Based on Distributed Economic Model Predictive Control Algorithm. Energies 2023, 16, 4658. [Google Scholar] [CrossRef]
- Yin, M.; Li, K.; Yu, J. A data-driven approach for microgrid distributed generation planning under uncertainties. Appl. Energy 2022, 309, 118429. [Google Scholar] [CrossRef]
- Pang, K.; Zhou, J.; Tsianikas, S.; Ma, Y. Deep reinforcement learning for resilient microgrid expansion planning with multiple energy resource. Qual. Reliab. Eng. Int. 2024, 40, 3203. [Google Scholar] [CrossRef]
- Mohseni, S.; Khalid, R.; Brent, A.C. Stochastic, resilience-oriented optimal sizing of off-grid microgrids considering EV-charging demand response: An efficiency comparison of state-of-the-art metaheuristics. Appl. Energy 2023, 341, 121007. [Google Scholar] [CrossRef]
- Cao, X.; Sun, X.; Xu, Z.; Zeng, B.; Guan, X. Hydrogen-Based Networked Microgrids Planning Through Two-Stage Stochastic Programming With Mixed-Integer Conic Recourse. IEEE Trans. Autom. Sci. Eng. 2022, 19, 3672–3685. [Google Scholar] [CrossRef]
- Parast, M.E.; Nazari, M.H.; Hosseinian, S.H. Resilience Improvement of Distribution Networks Using a Two-Stage Stochastic Multi-Objective Programming via Microgrids Optimal Performance. IEEE Access 2021, 9, 102930–102952. [Google Scholar] [CrossRef]
- Tabares, A.; Cortés, P.; Tabares, A.; Cortés, P. Using Stochastic Dual Dynamic Programming to Solve the Multi-Stage Energy Management Problem in Microgrids. Energies 2024, 17, 2628. [Google Scholar] [CrossRef]
- Lin, H.; Nazir, F.U.; Pal, B.C.; Guo, Y. A Linearized Branch Flow Model Considering Line Shunts for Radial Distribution Systems and Its Application in Volt/VAr Control. J. Mod. Power Syst. Clean Energy 2023, 11, 1191–1200. [Google Scholar] [CrossRef]
- Goyal, G.R.; Vadhera, S. Solution to Uncertainty of Renewable Energy Sources and Peak Hour Demand in Smart Grid System. Meas. Sens. 2024, 33, 101129. [Google Scholar] [CrossRef]
- Hosseinnezhad, V.; Rafiee, M.; Ahmadian, M.; Siano, P. Optimal day-ahead operational planning of microgrids. Energy Convers. Manag. 2016, 126, 142–157. [Google Scholar] [CrossRef]
- Alhawsawi, E.Y.; Habbi, H.M.D.; Hawsawi, M.; Zohdy, M.A.; Alhawsawi, E.Y.; Habbi, H.M.D.; Hawsawi, M.; Zohdy, M.A. Optimal Design and Operation of Hybrid Renewable Energy Systems for Oakland University. Energies 2023, 16, 5830. [Google Scholar] [CrossRef]
- Kumar, R.P.; Karthikeyan, G. A Multi-Objective Optimization Solution for Distributed Generation Energy Management in Microgrids with Hybrid Energy Sources and Battery Storage System. J. Energy Storage 2024, 75, 109702. [Google Scholar] [CrossRef]
- Lei, W.; Junping, Z.; Weijian, J.; Yuling, X. Frontiers|Bi-level optimization configuration method for microgrids considering carbon trading and demand response. Front. Energy Res. 2024, 11, 1334889. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, L.; Hou, R.; Wang, C.; Wang, X. A hybrid stochastic/robust-based multi-period investment planning model for island microgrid. Int. J. Electr. Power Energy Syst. 2021, 130, 106998. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, S.; Yin, W.; Wu, C.; Ye, J.; Wu, Y.; Liu, L.; Zhang, Y.; Yan, S.; Yin, W.; et al. HOMER-Based Multi-Scenario Collaborative Planning for Grid-Connected PV-Storage Microgrids with Electric Vehicles. Processes 2023, 11, 2408. [Google Scholar] [CrossRef]
- Jafari, A.; Khalili, T.; Ganjeh Ganjehlou, H.; Bidram, A. Optimal integration of renewable energy sources, diesel generators, and demand response program from pollution, financial, and reliability viewpoints: A multi-objective approach. J. Clean. Prod. 2020, 247, 119100. [Google Scholar] [CrossRef]
- Mobtahej, M.; Barzegaran, M.; Esapour, K. A novel Three-Stage demand side management framework for stochastic energy scheduling of renewable microgrids. Sol. Energy 2023, 256, 32–43. [Google Scholar] [CrossRef]
- Wang, Z.; Geng, Z.; Fang, X.; Tian, Q.; Lan, X.; Feng, J.; Wang, Z.; Geng, Z.; Fang, X.; Tian, Q.; et al. The Optimal and Economic Planning of a Power System Based on the Microgrid Concept with a Modified Seagull Optimization Algorithm Integrating Renewable Resources. Appl. Sci. 2022, 12, 4743. [Google Scholar] [CrossRef]
- Gharai, M.A.; Hooshmand, R.-A.; Nosratabadi, S.M. Eco-Environmental Uncertain Management of Various Energy Hubs within a Microgrid Concentrated on Demand Response, Intelligent Parking Lots, and Power-to-Gas Unit Effects. Int. J. Energy Res. 2023, 2023, 3173099. [Google Scholar] [CrossRef]
- Optimal operation and stochastic scheduling of renewable energy of a microgrid with optimal sizing of battery energy storage considering cost reduction. J. Energy Storage 2023, 59, 106475. [CrossRef]
- Kiptoo, M.K.; Adewuyi, O.B.; Lotfy, M.E.; Amara, T.; Konneh, K.V.; Senjyu, T.; Kiptoo, M.K.; Adewuyi, O.B.; Lotfy, M.E.; Amara, T.; et al. Assessing the Techno-Economic Benefits of Flexible Demand Resources Scheduling for Renewable Energy–Based Smart Microgrid Planning. Future Internet 2019, 11, 219. [Google Scholar] [CrossRef]
- Lukutin, B.V.; Muravyov, D.I. Optimization of Operational Control of Autonomous Photo-Diesel Power Supply System With DC Bus. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2022, 333, 224–235. [Google Scholar] [CrossRef]
- Ali, M.; Abdulgalil, M.A.; Habiballah, I.; Khalid, M. Optimal Scheduling of Isolated Microgrids With Hybrid Renewables and Energy Storage Systems Considering Demand Response. IEEE Access 2023, 11, 80266–80273. [Google Scholar] [CrossRef]
- Manbachi, M.; Ordonez, M. AMI-Based Energy Management for Islanded AC/DC Microgrids Utilizing Energy Conservation and Optimization. IEEE Trans. Smart Grid 2019, 10, 293–304. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, C.; Li, C.; Yang, G.; Dong, Z.Y. Transactive Energy Sharing in a Microgrid via an Enhanced Distributed Adaptive Robust Optimization Approach. IEEE Trans. Smart Grid 2022, 13, 2279–2293. [Google Scholar] [CrossRef]
- Wen, S.; Jin, X.; Zheng, Y.; Wang, M. Probabilistic Coordination of Optimal Power Management and Voyage Scheduling for All-Electric Ships. IEEE Trans. Transp. Electrif. 2024, 10, 3661–3669. [Google Scholar] [CrossRef]
- Ge, S.; Li, J.; Liu, H.; Sun, H.; Wang, Y.; Ge, S.; Li, J.; Liu, H.; Sun, H.; Wang, Y. Research on Operation–Planning Double-Layer Optimization Design Method for Multi-Energy Microgrid Considering Reliability. Appl. Sci. 2018, 8, 2062. [Google Scholar] [CrossRef]
- Soto, E.A.; Ortega, A.V.; Hernandez, A.; Bosman, L.; Soto, E.A.; Ortega, A.V.; Hernandez, A.; Bosman, L. Commercial Level Analysis of P2P vs. Net-Metering Comparing Economic and Technical Indexes. Eng 2023, 4, 2254–2273. [Google Scholar] [CrossRef]
- Koteswara Raju, D.; Seshu Kumar, R.; Phani Raghav, L.; Singh, A.R. Enhancement of loadability and voltage stability in grid-connected microgrid network. J. Clean. Prod. 2022, 374, 133881. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, Q.; Huang, M.; Yang, B. Optimization of economic/environmental operation management for microgrids by using hybrid fireworks algorithm. Int. Trans. Electr. Energy Syst. 2017, 27, 2429. [Google Scholar] [CrossRef]
- Abdelhadi, H.; Mahmoud, A.M.; Saied, E.M.M.; Mohamed, M.A.E. Innovative hierarchical control of multiple microgrids: Cheetah meets PSO. Energy Rep. 2024, 11, 4967–4981. [Google Scholar] [CrossRef]
- Marzband, M.; Azarinejadian, F.; Savaghebi, M.; Pouresmaeil, E.; Guerrero, J.M.; Lightbody, G. Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations. Renew. Energy 2018, 126, 95–106. [Google Scholar] [CrossRef]
- Azizi, A.; Jahromi, M.Z.; Dehghanian, P.; Chamorro, H.R.; Mírez, J.; Sood, V.K. Decentralized Multi-Objective Energy Management With Dynamic Power Electronic Converters and Demand Response Constraints. IEEE Access 2023, 11, 146297–146312. [Google Scholar] [CrossRef]
- Ghiasi, M.; Niknam, T.; Dehghani, M.; Siano, P.; Alhelou, H.H.; Al-Hinai, A.; Ghiasi, M.; Niknam, T.; Dehghani, M.; Siano, P.; et al. Optimal Multi-Operation Energy Management in Smart Microgrids in the Presence of RESs Based on Multi-Objective Improved DE Algorithm: Cost-Emission Based Optimization. Appl. Sci. 2021, 11, 3661. [Google Scholar] [CrossRef]
- Habib, H.U.R.; Waqar, A.; Hussien, M.G.; Junejo, A.K.; Jahangiri, M.; Imran, R.M.; Kim, Y.-S.; Kim, J.-H. Analysis of Microgrid’s Operation Integrated to Renewable Energy and Electric Vehicles in View of Multiple Demand Response Programs. IEEE Access 2022, 10, 7598–7638. [Google Scholar] [CrossRef]
- Giglio, E.; Novo, R.; Mattiazzo, G.; Fioriti, D. Reserve Provision in the Optimal Planning of Off-Grid Power Systems: Impact of Storage and Renewable Energy. IEEE Access 2023, 11, 100781–100797. [Google Scholar] [CrossRef]
- Daneshvar, M.; Mohammadi-Ivatloo, B.; Zare, K. A Fair Risk-Averse Stochastic Transactive Energy Model for 100% Renewable Multi-Microgrids in the Modern Power and Gas Incorporated Network. IEEE Trans. Smart Grid 2023, 14, 1933–1945. [Google Scholar] [CrossRef]
- Hussien, A.M.; Turky, R.A.; Hasanien, H.M.; Al-Durra, A. LMSRE-Based Adaptive PI Controller for Enhancing the Performance of an Autonomous Operation of Microgrids. IEEE Access 2021, 9, 90577–90586. [Google Scholar] [CrossRef]
- Hasanvand, S.; Rafiei, M.; Gheisarnejad, M.; Khooban, M.-H. Reliable Power Scheduling of an Emission-Free Ship: Multiobjective Deep Reinforcement Learning. IEEE Trans. Transp. Electrif. 2020, 6, 832–843. [Google Scholar] [CrossRef]
- Salama, H.S.; Kotb, K.M.; Vokony, I.; Dán, A.; Salama, H.S.; Kotb, K.M.; Vokony, I.; Dán, A. The Role of Hybrid Battery–SMES Energy Storage in Enriching the Permanence of PV–Wind DC Microgrids: A Case Study. Eng 2022, 3, 207–223. [Google Scholar] [CrossRef]
- Jamil, H.; Qayyum, F.; Iqbal, N.; Kim, D.-H.; Jamil, H.; Qayyum, F.; Iqbal, N.; Kim, D.-H. Enhanced Harmonics Reactive Power Control Strategy Based on Multilevel Inverter Using ML-FFNN for Dynamic Power Load Management in Microgrid. Sensors 2022, 22, 6402. [Google Scholar] [CrossRef]
- Velasquez, M.A.; Barreiro-Gomez, J.; Quijano, N.; Cadena, A.I.; Shahidehpour, M. Intra-Hour Microgrid Economic Dispatch Based on Model Predictive Control. IEEE Trans. Smart Grid 2020, 11, 1968–1979. [Google Scholar] [CrossRef]
- Bukar, A.L.; Tan, C.W.; Yiew, L.K.; Ayop, R.; Tan, W.-S. A rule-based energy management scheme for long-term optimal capacity planning of grid-independent microgrid optimized by multi-objective grasshopper optimization algorithm. Energy Convers. Manag. 2020, 221, 113161. [Google Scholar] [CrossRef] [PubMed]
- Balderrama, S.; Lombardi, F.; Riva, F.; Canedo, W.; Colombo, E.; Quoilin, S. A two-stage linear programming optimization framework for isolated hybrid microgrids in a rural context: The case study of the “El Espino” community. Energy 2019, 188, 116073. [Google Scholar] [CrossRef]
- Pawitan, G.A.H.; Kim, J.-S. MPC-Based Power Management of Renewable Generation Using Multi-ESS Guaranteeing SoC Constraints and Balancing. IEEE Access 2019, 8, 12897–12906. [Google Scholar] [CrossRef]
- Spiegel, M.H.; Strasser, T.I. Assessing the Value of Proactive Microgrid Scheduling. IEEE Access 2022, 10, 51062–51078. [Google Scholar] [CrossRef]
- Galkin, N.; Yang, C.-W.; Berezovskaya, Y.; Vesterlund, M.; Vyatkin, V. On Modelling of Edge Datacentre Microgrid for Participation in Smart Energy Infrastructures. IEEE Open J. Ind. Electron. Soc. 2022, 3, 50–64. [Google Scholar] [CrossRef]
- He, Z.; Khazaei, J.; Freihaut, J.D. Optimal integration of Vehicle to Building (V2B) and Building to Vehicle (B2V) technologies for commercial buildings. Sustain. Energy Grids Netw. 2022, 32, 100921. [Google Scholar] [CrossRef]
- Masaud, T.M.; El-Saadany, E.F. Correlating Optimal Size, Cycle Life Estimation, and Technology Selection of Batteries: A Two-Stage Approach for Microgrid Applications. IEEE Trans. Sustain. Energy 2020, 11, 1257–1267. [Google Scholar] [CrossRef]
- Boumaiza, A.; Sanfilippo, A. A Testing Framework for Blockchain-Based Energy Trade Microgrids Applications. IEEE Access 2024, 12, 27465–27483. [Google Scholar] [CrossRef]
- Abdulgalil, M.A.; Khalid, M.; Alismail, F. Optimizing a Distributed Wind-Storage System Under Critical Uncertainties Using Benders Decomposition|IEEE Journals & Magazine. IEEE Access 2019, 7, 77951–77963. [Google Scholar] [CrossRef]
- Yuan, Q.; Wang, H.; Khazaei, E.; Khan, B. Collaborative advanced machine learning techniques in optimal energy management of hybrid AC/DC IoT-based microgrids. Ad Hoc Netw. 2021, 122, 102657. [Google Scholar] [CrossRef]
- Ceja-Espinosa, C.; Pirnia, M.; Cañizares, C.A. An Affine Arithmetic-Based Energy Management System for Cooperative Multi-Microgrid Networks. IEEE Trans. Smart Grid 2024, 15, 1317–1329. [Google Scholar] [CrossRef]
- Rajakovic, N.L.; Shiljkut, V.M.; Rajakovic, N.L.; Shiljkut, V.M. Long-term forecasting of annual peak load considering effects of demand-side programs. J. Mod. Power Syst. Clean Energy 2017, 6, 145–157. [Google Scholar] [CrossRef]
- Obara, S.; Miyazaki, W. Numerical modeling to determine the limits on photovoltaic capacity when operating in a microgrid with solid-oxide fuel cell triple combined-cycle plants. Int. J. Electr. Power Energy Syst. 2021, 124, 106325. [Google Scholar] [CrossRef]
- Minciardi, R.; Robba, M. A Bilevel Approach for the Stochastic Optimal Operation of Interconnected Microgrids. IEEE Trans. Autom. Sci. Eng. 2017, 14, 482–493. [Google Scholar] [CrossRef]
- Brahmia, I.; Wang, J.; Xu, H.; Wang, H.; Turci, L.D.O. Robust Data Predictive Control Framework for Smart Multi-Microgrid Energy Dispatch Considering Electricity Market Uncertainty. IEEE Access 2021, 9, 32390–32404. [Google Scholar] [CrossRef]
- Rosin, A.; Ahmadiahangar, R.; Azizi, E.; Sahoo, S.; Vinnikov, D.; Blaabjerg, F.; Dragicevic, T.; Bolouki, S. Clustering-Based Penalty Signal Design for Flexibility Utilization. IEEE Access 2020, 8, 208850–208860. [Google Scholar] [CrossRef]
- Rastgoo, S.; Mahdavi, Z.; Nasab, M.A.; Zand, M.; Padmanaban, S.; Rastgoo, S.; Mahdavi, Z.; Azimi Nasab, M.; Zand, M.; Padmanaban, S. Using an Intelligent Control Method for Electric Vehicle Charging in Microgrids. World Electr. Veh. J. 2022, 13, 222. [Google Scholar] [CrossRef]
- Elazab, R.; Abdelnaby, A.T.; Ali, A.A. Impacts of multiple demand-side management strategies on microgrids planning: A literature survey. Clean Energy 2024, 8, 36–54. [Google Scholar] [CrossRef]
- Tudu, B.; Mandal, K.K.; Chakraborty, N.; Tudu, B.; Mandal, K.K.; Chakraborty, N. Optimal design and development of PV-wind-battery based nano-grid system: A field-on-laboratory demonstration. Front. Energy 2018, 13, 269–283. [Google Scholar] [CrossRef]
- Salawudeen, A.T.; Moritz, M.; Jahn, I.; Johnson, O.; Monti, A. Enhanced Chameleon Swarm Algorithms for Nested Identical Control of Load Frequency in Autonomous Microgrid. IEEE Access 2024, 12, 42544–42571. [Google Scholar] [CrossRef]
- Xiao, Y.; Ren, C.; Han, X.; Wang, P.; Xiao, Y.; Ren, C.; Han, X.; Wang, P. A Generalized and Mode-Adaptive Approach to the Power Flow Analysis of the Isolated Hybrid AC/DC Microgrids. Energies 2019, 12, 2253. [Google Scholar] [CrossRef]
- Memon, A.A.; Kauhaniemi, K. Real-Time Hardware-in-the-Loop Testing of IEC 61850 GOOSE-Based Logically Selective Adaptive Protection of AC Microgrid. IEEE Access 2021, 9, 154612–154639. [Google Scholar] [CrossRef]
- Ding, X.; Sun, W.; Harrison, G.P.; Lv, X.; Weng, Y. Multi-objective optimization for an integrated renewable, power-to-gas and solid oxide fuel cell/gas turbine hybrid system in microgrid. Energy 2020, 213, 118804. [Google Scholar] [CrossRef]
- Kiptoo, M.K.; Adewuyi, O.B.; Howlader, H.O.R.; Nakadomari, A.; Senjyu, T.; Kiptoo, M.K.; Adewuyi, O.B.; Howlader, H.O.R.; Nakadomari, A.; Senjyu, T. Optimal Capacity and Operational Planning for Renewable Energy-Based Microgrid Considering Different Demand-Side Management Strategies. Energies 2023, 16, 4147. [Google Scholar] [CrossRef]
- Yehia, D.M.; Numair, M.; Mansour, D.-E.A. Novel IoT-Based Droop Control for Battery SoC Balancing Among Multiple Microgrids. IEEE Trans. Smart Grid 2024, 15, 1304–1316. [Google Scholar] [CrossRef]
- Mohseni, S.; Khalid, R.; Brent, A.C. Metaheuristic-based isolated microgrid sizing and uncertainty quantification considering EVs as shiftable loads. Energy Rep. 2022, 8, 11288–11308. [Google Scholar] [CrossRef]
- Fotopoulou, M.; Pediaditis, P.; Skopetou, N.; Rakopoulos, D.; Christopoulos, S.; Kartalidis, A. A Review of the Energy Storage Systems of Non-Interconnected European Islands. Sustainability 2024, 16, 1572. [Google Scholar] [CrossRef]
- Unamuno, E.; Barrena, J.A. Hybrid ac/dc microgrids—Part I: Review and classification of topologies. Renew. Sustain. Energy Rev. 2015, 52, 1251–1259. [Google Scholar] [CrossRef]
- Katsaprakakis, D.A.; Proka, A.; Zafirakis, D.; Damasiotis, M.; Kotsampopoulos, P.; Hatziargyriou, N.; Dakanali, E.; Arnaoutakis, G.; Xevgenos, D.; Katsaprakakis, D.A.; et al. Greek Islands’ Energy Transition: From Lighthouse Projects to the Emergence of Energy Communities. Energies 2022, 15, 5996. [Google Scholar] [CrossRef]
Database | Query String |
---|---|
Scopus | TITLE-ABS-KEY (“microgrid” AND “optimal” AND (“planning” OR “expansion”) AND “renewable”) AND PUBYEAR > 2012 AND PUBYEAR < 2025 AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE, “English”)) |
IEEEXplore | (“Full Text & Metadata”:microgrid) AND (“Full Text & Metadata”:optimal planning) AND (“Full Text & Metadata”:optimal expansion) AND (“Full Text & Metadata”:renewable integration). Filters Applied: Journals, 2013–2024. |
MDPI | Search text: “microgrid”, Search Type: Full Text, Logical operator: AND, Search text: “optimal”, Search Type: Full Text, Logical operator: AND, Search text: “planning”, Search Type: Full Text, Logical operator: AND, Search text: “expansion”, Search Type: Full Text, Logical operator: AND, Search text: “renewable”, Search Type: Full Text. Years: Between 2013–2024; Article Types: Article. |
N° | Criterion | Description and Evaluation Metrics | Weight | Justification for Weighting |
---|---|---|---|---|
1 | Relevance to Research Topic | How well the study addresses microgrid expansion planning, interconnection planning of community microgrids, and optimal planning strategies. (1: Peripheral, 2: Somewhat, 3: Relevant, 4: Highly Relevant, 5: Central Focus) | 20% | Ensures selected studies are directly applicable and contribute new knowledge to the field of microgrids. Critical for providing a comprehensive review of microgrid expansion planning and integration of renewable energy. |
2 | Methodological Rigor | The robustness and appropriateness of the research methodology employed in the study. (1: Needs Improvement, 2: Fair, 3: Good, 4: Very Good, 5: Excellent) | 15% | Essential for valid and reliable conclusions. Robust methodologies enhance the credibility of findings and ensure studies can withstand scrutiny from academic and professional communities. |
3 | Experimental Validation | The extent to which the study includes experimental results, simulations, case studies, or real-world implementations. (1: None, 2: Limited, 3: Moderate, 4: Extensive, 5: Comprehensive) | 10% | Provides concrete evidence supporting the study’s claims through results from simulations, case studies, or real-world implementations. Important for substantiating the research. |
4 | Novelty and Contribution | The originality and significance of the study’s contributions to the field. (1: Limited, 2: Modest, 3: Moderate, 4: Significant, 5: Groundbreaking) | 15% | Identifies new advancements and emerging trends in the field. Essential for pushing the boundaries of current knowledge and practice in microgrid planning and optimization strategies. |
5 | Clarity and Completeness | The clarity of writing and the completeness of the information provided in the study. (1: Needs Improvement, 2: Fair, 3: Good, 4: Very Good, 5: Excellent) | 10% | Ensures studies are well-written and provide all necessary information for understanding and replicating the research. Important for comprehensive comprehension of methodologies and results. |
6 | Technical Depth | The level of technical detail and depth in the study. (1: Basic, 2: Adequate, 3: Detailed, 4: Very Detailed, 5: Highly Detailed) | 10% | Assesses the level of detail and sophistication in the study, which is important for understanding the intricacies of the research methodologies and outcomes. |
7 | Reproducibility | The extent to which the study provides enough detail to allow replication of the results. (1: None, 2: Limited, 3: Moderate, 4: Extensive, 5: Comprehensive) | 5% | Measures the extent to which the study provides enough detail to allow replication of the results. Crucial for validating findings independently. |
8 | Data Quality and Integrity | The quality and integrity of the data presented in the study. (1: Needs Improvement, 2: Fair, 3: Good, 4: Very Good, 5: Excellent) | 5% | Ensures the study is based on accurate and reliable data, fundamental for the validity of conclusions. |
9 | Practical Applicability | The potential for practical application of the study’s findings in real-world scenarios. (1: Limited, 2: Modest, 3: Moderate, 4: High, 5: Very High) | 5% | Evaluates the potential for applying the study’s findings in real-world scenarios, important for assessing the practical impact of the research. |
10 | Impact on Field | The potential impact of the study’s findings on microgrid expansion planning and renewable energy integration. (1: Limited, 2: Modest, 3: Moderate, 4: Significant, 5: Groundbreaking) | 5% | Measures the potential influence of the study’s findings on the field of microgrid expansion planning and renewable energy integration. Important for understanding the broader significance of the research. |
Inclusion | Criteria | Exclusion |
---|---|---|
Studies published in the last ten years (2013–2024). | Publication Date | Studies published before 2013. |
Studies published in English. | Language | Studies published in languages other than English. |
Peer-reviewed journal articles. | Document Type | Editorials, commentaries, opinion pieces, conference articles, and review articles. |
Studies addressing at least one of the topics: microgrid expansion planning, interconnection planning of community microgrids, and optimal planning strategies for microgrids. | Focus | Studies that do not specifically address microgrid expansion planning or interconnection planning of microgrids. |
Research may include modeling, simulation, optimization techniques, and practical case studies related to microgrid planning. | Scope | Research focusing on unrelated topics, such as general renewable energy systems without a microgrid context, and studies primarily focusing on technical aspects of microgrid components and operation without addressing the planning or expansion aspects. |
Topic | Novel Findings | Future Challenges |
---|---|---|
Microgrid Planning and Optimization | The use of evolutionary and stochastic algorithms to enhance microgrid planning and optimization. Integrating AI and machine learning to optimize performance and efficiency [5,28,37]. | Develop technologies that allow for the self-optimization and autonomous management of microgrids. Efficiently integrate new renewable energy sources [35,69,89]. |
Modeling and Simulation | Application of stochastic optimization techniques and genetic algorithms. Use of advanced simulations to predict and manage variability in renewable energy generation [20,24,76]. | Improve the accuracy and efficiency of simulations to predict better and manage fluctuations in energy generation and demand [28,73,94]. |
Energy Storage and Battery Technologies | Development of redox flow batteries and solid-state batteries. Innovations in lithium-ion batteries to enhance energy density and safety [26,28,35]. | Increase the sustainability and recyclability of batteries. Reduce production costs and improve the lifespan of storage technologies [42,70,89]. |
Power Systems Operation and Control | Implementation of real-time simulations and hardware-in-the-loop (HIL) testing. Dynamic power electronic converters enhance operational efficiency [63,89,94]. | Enhance microgrid resilience against faults and disturbances. Optimize the integration of renewable energies to maintain system stability [69,76,94]. |
Cycle Counting and Data Analysis | Application of AI algorithms and machine learning to analyze large data volumes. Advanced data analysis tools are used to optimize real-time microgrid operations [63,73,83]. | Develop more advanced methods for predictive analysis and real-time data management. Improve the accuracy and speed of analysis algorithms [69,89,94]. |
Urban and Rural Energy Solutions | Implementation of autonomous microgrids in rural areas. Use of affine arithmetic-based energy management schemes for multi-microgrid networks in urban settings [26,40,97]. | Foster the integration of urban and rural energy solutions to optimize resource use. Promote sustainable development through the adoption of clean and efficient technologies [42,69,97]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quizhpe, K.; Arévalo, P.; Ochoa-Correa, D.; Villa-Ávila, E. Optimizing Microgrid Planning for Renewable Integration in Power Systems: A Comprehensive Review. Electronics 2024, 13, 3620. https://doi.org/10.3390/electronics13183620
Quizhpe K, Arévalo P, Ochoa-Correa D, Villa-Ávila E. Optimizing Microgrid Planning for Renewable Integration in Power Systems: A Comprehensive Review. Electronics. 2024; 13(18):3620. https://doi.org/10.3390/electronics13183620
Chicago/Turabian StyleQuizhpe, Klever, Paul Arévalo, Danny Ochoa-Correa, and Edisson Villa-Ávila. 2024. "Optimizing Microgrid Planning for Renewable Integration in Power Systems: A Comprehensive Review" Electronics 13, no. 18: 3620. https://doi.org/10.3390/electronics13183620
APA StyleQuizhpe, K., Arévalo, P., Ochoa-Correa, D., & Villa-Ávila, E. (2024). Optimizing Microgrid Planning for Renewable Integration in Power Systems: A Comprehensive Review. Electronics, 13(18), 3620. https://doi.org/10.3390/electronics13183620