A Light-Weight Self-Supervised Infrared Image Perception Enhancement Method
Abstract
:1. Introduction
- Owing to the specific heat distribution and object features contained in infrared images, a lightweight structure is designed to capture the key information in infrared images, such as hotspots, edges, and textures.
- By training the model in a self-supervised manner, the proposed method overcomes the limitation of traditional supervised learning, which requires a large amount of ground truth data. This reduces the data cost and workload and improves the utilization rate of the available data.
- By incorporating into the loss function of the , the proposed method leverages the multi-scale image details extracted by the normalized Laplacian pyramid. This enables the enhancement model to achieve excellent results in infrared image perceptual enhancement and demonstrates robust and generalized performance.
- Our method achieves excellent performance with a small computational cost and has the fastest running speed, making it suitable for a wider range of physical scenarios.
2. Related Work
2.1. Traditional Image Enhancement Methods
2.2. Image Perception Enhancement Methods
3. Materials and Methods
3.1. Lightweight
3.2. Objective Function Based on Metric Perceptual Distance
3.2.1.
3.2.2. Using as the Loss Function
3.3. Self-Supervision
4. Experimental Results and Analysis
4.1. Experimental Setup
4.2. Dataset
4.3. Evaluation Metrics
4.4. Ablation Study
4.5. Comparative Test Analysis
4.5.1. Results on the Dataset
4.5.2. Results on the Dataset
4.5.3. Results on the Dataset
4.5.4. Results on the Dataset
4.5.5. People’s Subjective Evaluation
- (1)
- Whether the image exhibited texture distortion;
- (2)
- Whether the image contained visible noise;
- (3)
- Whether the image contained over-exposed or under-exposed artifacts.
4.5.6. Computational Efficiency Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, Z.; Bi, D.; Xiong, L.; Ma, S.; He, L.; Ding, W. Dim infrared image enhancement based on convolutional neural network. Neurocomputing 2018, 272, 396–404. [Google Scholar] [CrossRef]
- Kuang, X.; Sui, X.; Liu, Y.; Chen, Q.; Gu, G. Single infrared image enhancement using a deep convolutional neural network. Neurocomputing 2019, 332, 119–128. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Siddique, N.; Paheding, S.; Elkin, C.P.; Devabhaktuni, V. U-net and its variants for medical image segmentation: A review of theory and applications. IEEE Access 2021, 9, 82031–82057. [Google Scholar] [CrossRef]
- Gao, Z.; Dai, J.; Xie, C. Dim and small target detection based on feature mapping neural networks. J. Vis. Commun. Image Represent. 2019, 62, 206–216. [Google Scholar] [CrossRef]
- Han, J.; Moradi, S.; Faramarzi, I.; Zhang, H.; Zhao, Q.; Zhang, X.; Li, N. Infrared small target detection based on the weighted strengthened local contrast measure. IEEE Geosci. Remote. Sens. Lett. 2020, 18, 1670–1674. [Google Scholar] [CrossRef]
- Yuan, Z.; Jia, L.; Wang, P.; Zhang, Z.; Li, Y.; Xia, M. Infrared Image Enhancement Based on Multiple Scale Retinex and Sequential Guided Image Filter. In Proceedings of the 2024 3rd Asia Conference on Algorithms, Computing and Machine Learning, Shanghai, China, 22–24 March 2024; pp. 196–201. [Google Scholar]
- Shanmugavadivu, P.; Balasubramanian, K. Particle swarm optimized multi-objective histogram equalization for image enhancement. Opt. Laser Technol. 2014, 57, 243–251. [Google Scholar] [CrossRef]
- Gupta, B.; Tiwari, M. A tool supported approach for brightness preserving contrast enhancement and mass segmentation of mammogram images using histogram modified grey relational analysis. Multidimens. Syst. Signal Process. 2017, 28, 1549–1567. [Google Scholar] [CrossRef]
- Huang, S.C.; Cheng, F.C.; Chiu, Y.S. Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans. Image Process. 2012, 22, 1032–1041. [Google Scholar] [CrossRef]
- Lore, K.G.; Akintayo, A.; Sarkar, S. LLNet: A deep autoencoder approach to natural low-light image enhancement. Pattern Recognit. 2017, 61, 650–662. [Google Scholar] [CrossRef]
- Wei, C.; Wang, W.; Yang, W.; Liu, J. Deep retinex decomposition for low-light enhancement. arXiv 2018, arXiv:1808.04560. [Google Scholar]
- Petro, A.B.; Sbert, C.; Morel, J.M. Multiscale retinex. Image Process. Line 2014, 4, 71–88. [Google Scholar] [CrossRef]
- Yang, W.; Wang, W.; Huang, H.; Wang, S.; Liu, J. Sparse gradient regularized deep retinex network for robust low-light image enhancement. IEEE Trans. Image Process. 2021, 30, 2072–2086. [Google Scholar] [CrossRef]
- Li, M.; Liu, J.; Yang, W.; Sun, X.; Guo, Z. Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans. Image Process. 2018, 27, 2828–2841. [Google Scholar] [CrossRef]
- Levoy, M.; Hanrahan, P. Light field rendering. In Seminal Graphics Papers: Pushing the Boundaries; ACM Digital Library: New York, NY, USA, 2023; Volume 2, pp. 441–452. [Google Scholar]
- Gong, X.; Chang, S.; Jiang, Y.; Wang, Z. Autogan: Neural architecture search for generative adversarial networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3224–3234. [Google Scholar]
- Gong, C.; Tao, D.; Maybank, S.J.; Liu, W.; Kang, G.; Yang, J. Multi-modal curriculum learning for semi-supervised image classification. IEEE Trans. Image Process. 2016, 25, 3249–3260. [Google Scholar] [CrossRef]
- Rani, V.; Nabi, S.T.; Kumar, M.; Mittal, A.; Kumar, K. Self-supervised learning: A succinct review. Arch. Comput. Methods Eng. 2023, 30, 2761–2775. [Google Scholar] [CrossRef] [PubMed]
- Papandreou, G.; Chen, L.C.; Murphy, K.P.; Yuille, A.L. Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1742–1750. [Google Scholar]
- Huang, X.; Liu, M.Y.; Belongie, S.; Kautz, J. Multimodal unsupervised image-to-image translation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 172–189. [Google Scholar]
- Liu, M.Y.; Breuel, T.; Kautz, J. Unsupervised image-to-image translation networks. In Proceedings of the NIPS’17: Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Laparra, V.; Ballé, J.; Berardino, A.; Simoncelli, E.P. Perceptual image quality assessment using a normalized Laplacian pyramid. Electron. Imaging 2016, 28, 1–6. [Google Scholar] [CrossRef]
- Laparra, V.; Berardino, A.; Ballé, J.; Simoncelli, E.P. Perceptually optimized image rendering. JOSA A 2017, 34, 1511–1525. [Google Scholar] [CrossRef] [PubMed]
- Abdullah-Al-Wadud, M.; Kabir, M.H.; Dewan, M.A.A.; Chae, O. A dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 2007, 53, 593–600. [Google Scholar] [CrossRef]
- Nakai, K.; Hoshi, Y.; Taguchi, A. Color image contrast enhacement method based on differential intensity/saturation gray-levels histograms. In Proceedings of the 2013 International Symposium on Intelligent Signal Processing and Communication Systems, Okinawa, Japan, 12–15 November 2013; pp. 445–449. [Google Scholar]
- Reza, A.M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Signal Process. Syst. Signal Image Video Technol. 2004, 38, 35–44. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Y.; Zha, Z.J.; Zhang, J.; Xiong, Z.; Zhang, W.; Wu, F. Progressive retinex: Mutually reinforced illumination-noise perception network for low-light image enhancement. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 2015–2023. [Google Scholar]
- Guan, X.; Jian, S.; Hongda, P.; Zhiguo, Z.; Haibin, G. An image enhancement method based on gamma correction. In Proceedings of the 2009 Second International Symposium on Computational Intelligence and Design, Changsha, China, 12–14 December 2009; Volume 1, pp. 60–63. [Google Scholar]
- Zhang, D.; Zhang, D. Wavelet transform. In Fundamentals of Image Data Mining: Analysis, Features, Classification and Retrieval; Springer: Berlin/Heidelberg, Germany, 2019; pp. 35–44. [Google Scholar]
- Guo, X.; Li, Y.; Ling, H. LIME: Low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 2016, 26, 982–993. [Google Scholar] [CrossRef]
- Fan, G.D.; Fan, B.; Gan, M.; Chen, G.Y.; Chen, C.P. Multiscale low-light image enhancement network with illumination constraint. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 7403–7417. [Google Scholar] [CrossRef]
- Cha, D.; Jeong, S.; Yoo, M.; Oh, J.; Han, D. Multi-input deep learning based FMCW radar signal classification. Electronics 2021, 10, 1144. [Google Scholar] [CrossRef]
- Wu, W.; Weng, J.; Zhang, P.; Wang, X.; Yang, W.; Jiang, J. Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5901–5910. [Google Scholar]
- Jiang, Y.; Gong, X.; Liu, D.; Cheng, Y.; Fang, C.; Shen, X.; Yang, J.; Zhou, P.; Wang, Z. Enlightengan: Deep light enhancement without paired supervision. IEEE Trans. Image Process. 2021, 30, 2340–2349. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Ma, L.; Zhang, J.; Fan, X.; Luo, Z. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 10561–10570. [Google Scholar]
- Li, C.; Guo, C.; Loy, C.C. Learning to enhance low-light image via zero-reference deep curve estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 4225–4238. [Google Scholar] [CrossRef] [PubMed]
- Setiadi, D.R.I.M. PSNR vs. SSIM: Imperceptibility quality assessment for image steganography. Multimed. Tools Appl. 2021, 80, 8423–8444. [Google Scholar] [CrossRef]
- Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
- Walach, H.; Buchheld, N.; Buttenmüller, V.; Kleinknecht, N.; Schmidt, S. Measuring mindfulness—the Freiburg mindfulness inventory (FMI). Personal. Individ. Differ. 2006, 40, 1543–1555. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference (Proceedings, Part II 14), Amsterdam, The Netherlands, 11–14 October 2016; pp. 391–407. [Google Scholar]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690. [Google Scholar]
- Burt, P.J.; Adelson, E.H. The Laplacian pyramid as a compact image code. In Readings in Computer Vision; Elsevier: Amsterdam, The Netherlands, 1987; pp. 671–679. [Google Scholar]
- Paris, S.; Hasinoff, S.W.; Kautz, J. Local Laplacian filters: Edge-aware image processing with a Laplacian pyramid. ACM Trans. Graph. 2011, 30, 68. [Google Scholar] [CrossRef]
- Laparra, V.; Muñoz-Marí, J.; Malo, J. Divisive normalization image quality metric revisited. JOSA A 2010, 27, 852–864. [Google Scholar] [CrossRef]
- Heeger, D.J. Normalization of cell responses in cat striate cortex. Vis. Neurosci. 1992, 9, 181–197. [Google Scholar] [CrossRef]
- Lan, Z.; Lin, M.; Li, X.; Hauptmann, A.G.; Raj, B. Beyond gaussian pyramid: Multi-skip feature stacking for action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 204–212. [Google Scholar]
- Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep laplacian pyramid networks for fast and accurate super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 624–632. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Ponomarenko, N.; Lukin, V.; Zelensky, A.; Egiazarian, K.; Carli, M.; Battisti, F. TID2008-a database for evaluation of full-reference visual quality assessment metrics. Adv. Mod. Radioelectron. 2009, 10, 30–45. [Google Scholar]
- Suo, J.; Wang, T.; Zhang, X.; Chen, H.; Zhou, W.; Shi, W. HIT-UAV: A high-altitude infrared thermal dataset for Unmanned Aerial Vehicle-based object detection. Sci. Data 2023, 10, 227. [Google Scholar] [CrossRef] [PubMed]
- Serp, J.; Allibert, M.; Beneš, O.; Delpech, S.; Feynberg, O.; Ghetta, V.; Heuer, D.; Holcomb, D.; Ignatiev, V.; Kloosterman, J.L.; et al. The molten salt reactor (MSR) in generation IV: Overview and perspectives. Prog. Nucl. Energy 2014, 77, 308–319. [Google Scholar] [CrossRef]
- Kuenen, J.; Visschedijk, A.; Jozwicka, M.; Denier Van Der Gon, H. TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling. Atmos. Chem. Phys. 2014, 14, 10963–10976. [Google Scholar] [CrossRef]
- Zhang, X.; Ye, P.; Xiao, G. VIFB: A visible and infrared image fusion benchmark. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 104–105. [Google Scholar]
- Zhang, L.; Zhang, L.; Bovik, A.C. A feature-enriched completely blind image quality evaluator. IEEE Trans. Image Process. 2015, 24, 2579–2591. [Google Scholar] [CrossRef]
- Guttman, A. R-trees: A dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD International Conference on Management of Data, Boston MA, USA, 18–21 June 1984; pp. 47–57. [Google Scholar]
- Horn-von Hoegen, M.; Schmidt, T.; Meyer, G.; Winau, D.; Rieder, K. Lattice accommodation of low-index planes: Ag (111) on Si (001). Phys. Rev. B 1995, 52, 10764. [Google Scholar] [CrossRef]
NIQE | EN | PSNR | AG | SSIM | NLPD | |
---|---|---|---|---|---|---|
DHECTI | 5.0153 | 7.6206 | 17.8035 | 10.2708 | 0.7591 | 0.2220 |
EnglightenGAN | 5.6981 | 6.9246 | 12.2964 | 4.6403 | 0.8102 | 0.2415 |
HE | 5.0049 | 7.9568 | 19.0419 | 7.3519 | 0.8302 | 0.2086 |
LIME | 5.5431 | 7.1541 | 18.1563 | 5.8662 | 50.9384 | 0.2136 |
NPE | 5.9102 | 6.9183 | 23.3792 | 5.0112 | 0.9730 | 0.2321 |
ZeroDceP | 5.5286 | 6.6832 | 12.7426 | 5.1908 | 0.8295 | 0.2411 |
Ours | 5.2228 | 7.7903 | 17.2489 | 9.9996 | 0.79620 | 0.1236 |
NIQE | EN | PSNR | AG | SSIM | NLPD | |
---|---|---|---|---|---|---|
DHECTI | 3.5195 | 6.7873 | 17.6502 | 4.8044 | 0.4899 | 0.0998 |
EnglightenGAN | 3.4975 | 6.4964 | 9.0982 | 3.7535 | 0.2348 | 0.1020 |
CLAHE | 3.6884 | 6.5106 | 25.8089 | 1.8769 | 0.7868 | 0.1339 |
LIME | 4.8480 | 5.3585 | 23.8129 | 1.8196 | 0.7469 | 0.2686 |
NPE | 4.4519 | 5.3609 | 27.5203 | 2.1749 | 0.8453 | 0.2291 |
ZeroDceP | 3.4600 | 7.2106 | 11.8708 | 5.9975 | 0.2544 | 0.1224 |
Ours | 3.4336 | 6.8434 | 15.8677 | 5.2749 | 0.4058 | 0.0535 |
NIQE | EN | PSNR | AG | SSIM | NLPD | |
---|---|---|---|---|---|---|
DHECTI | 6.4298 | 6.8943 | 19.6723 | 8.2800 | 0.7058 | 0.1652 |
EnglightenGAN | 6.2767 | 5.9904 | 10.3586 | 3.6241 | 0.8146 | 0.2086 |
HE | 6.0037 | 6.0579 | 13.5681 | 8.9784 | 0.5819 | 0.2401 |
LIME | 6.8526 | 5.7310 | 18.4287 | 3.4361 | 0.9558 | 0.2166 |
NPE | 7.2304 | 6.0679 | 22.7163 | 2.8657 | 0.9821 | 0.2468 |
ZeroDceP | 7.0859 | 5.9203 | 12.7361 | 3.0101 | 0.8799 | 0.2448 |
Ours | 6.4191 | 7.4784 | 13.4904 | 7.4619 | 0.7242 | 0.0858 |
NIQE | EN | PSNR | AG | SSIM | NLPD | |
---|---|---|---|---|---|---|
DHECTI | 4.7578 | 6.8732 | 20.8278 | 5.7524 | 0.7574 | 0.1656 |
EnglightenGAN | 5.6615 | 6.3631 | 10.5073 | 2.6205 | 0.8274 | 0.1905 |
HE | 4.4711 | 7.8325 | 13.5032 | 6.0706 | 0.6356 | 0.2348 |
LIME | 5.7914 | 6.4177 | 17.7937 | 2.5862 | 0.9585 | 0.2272 |
NPE | 6.0682 | 6.1399 | 23.0080 | 2.0974 | 0.9835 | 0.2390 |
ZeroDceP | 5.9848 | 5.6649 | 13.5126 | 2.1087 | 0.8981 | 0.2341 |
Ours | 4.8693 | 7.0655 | 13.7773 | 5.9834 | 0.7154 | 0.0891 |
Time (seconds) | HIT-UAV | MSRS | TNO | VIFB |
---|---|---|---|---|
DHECTI | 0.0225 | 0.0316 | 0.0292 | 0.0390 |
EnglightenGAN | 0.0276 | 0.0337 | 0.0266 | 0.0323 |
HE | 0.0091 | 0.0195 | 0.0178 | 0.0228 |
LIME | 0.0197 | 0.0298 | 0.0235 | 0.0259 |
NPE | 0.0115 | 0.0185 | 0.0229 | 0.0217 |
ZeroDceP | 0.0308 | 0.0327 | 0.0366 | 0.0365 |
Ours | 0.0073 | 0.0122 | 0.0098 | 0.0177 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Zhang, Z.; Li, Z. A Light-Weight Self-Supervised Infrared Image Perception Enhancement Method. Electronics 2024, 13, 3695. https://doi.org/10.3390/electronics13183695
Xiao Y, Zhang Z, Li Z. A Light-Weight Self-Supervised Infrared Image Perception Enhancement Method. Electronics. 2024; 13(18):3695. https://doi.org/10.3390/electronics13183695
Chicago/Turabian StyleXiao, Yifan, Zhilong Zhang, and Zhouli Li. 2024. "A Light-Weight Self-Supervised Infrared Image Perception Enhancement Method" Electronics 13, no. 18: 3695. https://doi.org/10.3390/electronics13183695
APA StyleXiao, Y., Zhang, Z., & Li, Z. (2024). A Light-Weight Self-Supervised Infrared Image Perception Enhancement Method. Electronics, 13(18), 3695. https://doi.org/10.3390/electronics13183695