OAR-UNet: Enhancing Long-Distance Dependencies for Head and Neck OAR Segmentation
Abstract
:1. Introduction
2. Methodology
2.1. Overview of OAR-UNet
2.2. Designing OAR-UNet Model for OAR Segmentation
2.2.1. Local Feature Perception Module
2.2.2. Cross-Shaped Transformer Block
3. Data Preparation and Implementation Details
3.1. Data Preparation
3.2. Loss Function
3.3. Evaluation Criteria
3.4. Implementation Details
4. Results
4.1. Ablation Experiments
4.2. Comparative Experiments
4.3. Visualization
5. Discussion
5.1. Findings
5.2. Limitation and Future Works
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gormley, M.; Creaney, G.; Schache, A.; Ingarfield, K.; Conway, D.I. Reviewing the Epidemiology of Head and Neck Cancer: Definitions, Trends and Risk Factors. Br. Dent. J. 2022, 233, 780–786. [Google Scholar] [CrossRef]
- Thomas, S.J.; Penfold, C.M.; Waylen, A.; Ness, A.R. The Changing Aetiology of Head and Neck Squamous Cell Cancer: A Tale of Three Cancers? Clin. Otolaryngol. 2018, 43, 999–1003. [Google Scholar] [CrossRef]
- Gujral, D.M.; Nutting, C.M. Patterns of Failure, Treatment Outcomes and Late Toxicities of Head and Neck Cancer in the Current Era of IMRT. Oral Oncol. 2018, 86, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Gupta, T.; Agarwal, J.; Jain, S.; Phurailatpam, R.; Kannan, S.; Ghosh-Laskar, S.; Murthy, V.; Budrukkar, A.; Dinshaw, K.; Prabhash, K. Three-Dimensional Conformal Radiotherapy (3D-CRT) versus Intensity Modulated Radiation Therapy (IMRT) in Squamous Cell Carcinoma of the Head and Neck: A Randomized Controlled Trial. Radiother. Oncol. 2012, 104, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Sapkaroski, D.; Osborne, C.; Knight, K.A. A Review of Stereotactic Body Radiotherapy–Is Volumetric Modulated Arc Therapy the Answer? J. Med. Radiat. Sci. 2015, 62, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, K.; Mohammadi, M.; Shepherd, J. Applications of Linac-Mounted Kilovoltage Cone-Beam Computed Tomography in Modern Radiation Therapy: A Review. Polish J. Radiol. 2014, 79, 181. [Google Scholar]
- Reggiori, G.; Mancosu, P.; Tozzi, A.; Cantone, M.C.; Castiglioni, S.; Lattuada, P.; Lobefalo, F.; Cozzi, L.; Fogliata, A.; Navarria, P. Cone Beam CT Pre-and Post-daily Treatment for Assessing Geometrical and Dosimetric Intrafraction Variability during Radiotherapy of Prostate Cancer. J. Appl. Clin. Med. Phys. 2011, 12, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2015; Volume 9351, pp. 234–241. [Google Scholar]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. Unet++: A Nested u-Net Architecture for Medical Image Segmentation. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 20 September 2018; Proceedings 4. Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–11. [Google Scholar]
- Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. ResUNet-a: A Deep Learning Framework for Semantic Segmentation of Remotely Sensed Data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [Google Scholar] [CrossRef]
- Vaswani, A. Attention Is All You Need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv 2021, arXiv:2102.04306. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 205–218. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021. [Google Scholar]
- Li, W.; Zhang, W. UTAC-Net: A Semantic Segmentation Model for Computer-Aided Diagnosis for Ischemic Region Based on Nuclear Medicine Cerebral Perfusion Imaging. Electronics 2024, 13, 1466. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, R.; Yang, Y.; Zhang, J.; Shao, K.; Tao, C.; Chen, Y.; Metaxas, D.N.; Li, H.; Chen, M. FocusNetv2: Imbalanced Large and Small Organ Segmentation with Adversarial Shape Constraint for Head and Neck CT Images. Med. Image Anal. 2021, 67, 101831. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Qi, X.; Zhang, B.; Wu, B.; Le, H.; Jeong, B.; Liao, Z.; Liu, Y.; Verjans, J.; To, M.-S. Segreg: Segmenting Oars by Registering Mr Images and Ct Annotations. In Proceedings of the 2024 IEEE International Symposium on Biomedical Imaging (ISBI), Athens, Greece, 27–30 May 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–5. [Google Scholar]
- Zhong, Y.; Yang, Y.; Fang, Y.; Wang, J.; Hu, W. A Preliminary Experience of Implementing Deep-Learning Based Auto-Segmentation in Head and Neck Cancer: A Study on Real-World Clinical Cases. Front. Oncol. 2021, 11, 638197. [Google Scholar] [CrossRef] [PubMed]
- Ibragimov, B.; Xing, L. Segmentation of Organs-at-risks in Head and Neck CT Images Using Convolutional Neural Networks. Med. Phys. 2017, 44, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Luan, S.; Wei, C.; Ding, Y.; Xue, X.; Wei, W.; Yu, X.; Wang, X.; Ma, C.; Zhu, B. PCG-Net: Feature Adaptive Deep Learning for Automated Head and Neck Organs-at-Risk Segmentation. Front. Oncol. 2023, 13, 1177788. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, M. SENetV2: Aggregated Dense Layer for Channelwise and Global Representations. arXiv 2023, arXiv:2311.10807. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Luo, X.; Fu, J.; Zhong, Y.; Liu, S.; Han, B.; Astaraki, M.; Bendazzoli, S.; Toma-Dasu, I.; Ye, Y.; Chen, Z. Segrap2023: A Benchmark of Organs-at-Risk and Gross Tumor Volume Segmentation for Radiotherapy Planning of Nasopharyngeal Carcinoma. arXiv 2023, arXiv:2312.09576. [Google Scholar]
- Raudaschl, P.F.; Zaffino, P.; Sharp, G.C.; Spadea, M.F.; Chen, A.; Dawant, B.M.; Albrecht, T.; Gass, T.; Langguth, C.; Lüthi, M.; et al. Evaluation of Segmentation Methods on Head and Neck CT: Auto-Segmentation Challenge 2015. Med. Phys. 2017, 44, 2020–2036. [Google Scholar] [CrossRef] [PubMed]
SegRap2023 | PDDCA | |||||
---|---|---|---|---|---|---|
LFPM | CSTB | LEM | mIoU | mDice | mIoU | mDice |
× | × | × | 0.6751 | 0.7014 | 0.7894 | 0.8145 |
√ | × | × | 0.7043 | 0.7355 | 0.8164 | 0.8451 |
× | √ | × | 0.6932 | 0.7251 | 0.8041 | 0.8355 |
× | × | √ | 0.6843 | 0.7151 | 0.7918 | 0.8189 |
× | √ | √ | 0.7241 | 0.7598 | 0.8411 | 0.8741 |
√ | √ | √ | 0.7478 | 0.7822 | 0.8545 | 0.8942 |
SegRap2023 | PDDCA | |||||
---|---|---|---|---|---|---|
CE | Dice | Ratio | mIoU | mDice | mIoU | mDice |
√ | × | — | 0.7255 | 0.7613 | 0.8378 | 0.8798 |
× | √ | — | 0.7135 | 0.7589 | 0.8276 | 0.8681 |
√ | √ | 1:1 | 0.7372 | 0.7764 | 0.8436 | 0.8842 |
√ | √ | 2:1 | 0.7478 | 0.7822 | 0.8545 | 0.8942 |
√ | √ | 3:1 | 0.7391 | 0.7781 | 0.8492 | 0.8897 |
√ | √ | 1:2 | 0.7295 | 0.7710 | 0.8398 | 0.8791 |
√ | √ | 1:3 | 0.7218 | 0.7643 | 0.8341 | 0.8746 |
SegRap2023 | PDDCA | |||
---|---|---|---|---|
Method | mIoU | mDice | mIoU | mDice |
UNet [8] | 0.6542 | 0.6851 | 0.7715 | 0.8074 |
UNet++ [9] | 0.6689 | 0.7007 | 0.7811 | 0.8123 |
ResUNet [10] | 0.6734 | 0.7015 | 0.7826 | 0.8193 |
TransUNet [12] | 0.6918 | 0.7202 | 0.7945 | 0.8310 |
SwinUNet [14] | 0.7101 | 0.7387 | 0.8068 | 0.8432 |
SegReg [18] | 0.7213 | 0.7674 | 0.8352 | 0.8752 |
FocusNetv2 [17] | 0.7362 | 0.7695 | 0.8223 | 0.8785 |
OAR-UNet | 0.7478 | 0.7822 | 0.8545 | 0.8942 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, K.; Zhou, D.; Gong, S. OAR-UNet: Enhancing Long-Distance Dependencies for Head and Neck OAR Segmentation. Electronics 2024, 13, 3771. https://doi.org/10.3390/electronics13183771
Peng K, Zhou D, Gong S. OAR-UNet: Enhancing Long-Distance Dependencies for Head and Neck OAR Segmentation. Electronics. 2024; 13(18):3771. https://doi.org/10.3390/electronics13183771
Chicago/Turabian StylePeng, Kuankuan, Danyu Zhou, and Shihua Gong. 2024. "OAR-UNet: Enhancing Long-Distance Dependencies for Head and Neck OAR Segmentation" Electronics 13, no. 18: 3771. https://doi.org/10.3390/electronics13183771
APA StylePeng, K., Zhou, D., & Gong, S. (2024). OAR-UNet: Enhancing Long-Distance Dependencies for Head and Neck OAR Segmentation. Electronics, 13(18), 3771. https://doi.org/10.3390/electronics13183771