Energy Efficiency Evaluation of Artificial Intelligence Algorithms †
Abstract
:1. Introduction
2. Survey of Related Literature
3. Materials, Tools, and Methods
- The tests must involve problems with unknown optimal solutions.
- The tests should be scalable to multidimensional formats.
- The tests should feature heterogeneous landscapes.
- Griewank test: A global optimisation problem with an optimal value of 0 [43].
- Michalewicz test: A global test with an unknown optimum that varies depending on the number of dimensions [44].
- Norwegian test: Another global test with an unknown optimum influenced by dimensionality [45].
- Rastrigin test: A global optimisation problem with an optimal value of 0 [46].
- Rosenbrock test: A smooth, flat test with a single solution and an optimal value of 0 [47].
- Schwefel test: A global optimisation problem with an optimal value of 0 [48].
- Step test: A test that introduces plateaus into the topology, which prevents reliance on local correlation in the search process. Its optimal value depends on the number of dimensions and may be unknown for various dimensions [49].
- Particle Swarm Optimisation (PSO): A swarm-based algorithm for real-coded tasks over continuous spaces [50].
- Differential Evolution (DE): A heuristic algorithm designed for optimising nonlinear and non-differentiable functions in continuous spaces [51].
- Free Search (FS): An adaptive heuristic algorithm for search and optimisation within continuous spaces [52].
Methodology
- Duration (min): Time taken for each experiment.
- Number of iterations (integer): The count of repeated cycles for each algorithm.
- Mean system power (W): Average power consumption of the entire system.
- System energy (Wh): Total energy consumption over time.
- CPU usage (%): The percentage of CPU utilization during algorithm execution.
- CPU power (W): Power consumption specific to the CPU.
- CPU cores (1 core—1 thread): Number of active cores and threads during processing.
4. Results
- Time for objective function evaluation: This represents the duration required to understand and assess the search space.
- Time for algorithm execution: This refers to the time taken for the interpretation and assessment of the search space by the algorithm.
- Time for algorithm decision making: This is the duration needed for the algorithm to make decisions and select subsequent actions.
5. Discussion
- Intuitive cognition involves the immediate apprehension that allows the intellect to make evident judgments about the existence or qualities of an object.
- Abstractive cognition, on the other hand, is an act of cognition where such judgments cannot be evidently made.
6. Conclusions
- The overall growth in energy consumption by computational systems poses significant challenges, especially considering the fundamental physical limitations that, if left unaddressed, could lead to global negative consequences.
- Although there have been positive changes in hardware energy efficiency, the sustainability of software, particularly the energy efficiency of intelligent algorithms, plays a critical role.
- Our empirical evaluation demonstrates the variation in time and energy consumption of intelligent, adaptive algorithms applied to heterogeneous numerical tests, revealing substantial differences in energy efficiency and speed when different algorithms are used for the same tasks.
- The study identifies potential benefits of time- and energy-efficient software, underscoring the importance of optimising computational processes to reduce their environmental impact.
- The discussion on the interrelationship between concepts, computational intelligence, and the role of cognition in advancing intelligent algorithms further elucidates the complexities involved in this area of study.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Paul, S.G.; Saha, A.; Arefin, M.S.; Bhuiyan, T.; Biswas, A.A.; Reza, A.W.; Alotaibi, N.M.; Alyami, S.A.; Moni, M.A. A Comprehensive Review of Green Computing: Past, Present, and Future Research. IEEE Access 2023, 11, 87445–87494. [Google Scholar] [CrossRef]
- Cheng, L.; Varshney, K.R.; Liu, H. Socially responsible AI algorithms: Issues, purposes, and challenges. J. Artif. Intell. Res. 2021, 71, 1137–1181. [Google Scholar] [CrossRef]
- Lee, S.U.; Fernando, N.; Lee, K.; Schneider, J. A survey of energy concerns for software engineering. J. Syst. Softw. 2024, 210, 111944. [Google Scholar] [CrossRef]
- Naumann, S.; Dick, M.; Kern, E.; Johann, T. The GREENSOFT Model: A reference model for green and sustainable software and its engineering. Sustain. Comput. Inform. Syst. 2011, 1, 294–304. [Google Scholar] [CrossRef]
- Raimi, D.; Zhu, Y.; Newell, R.G.; Prest, B.C. Global Energy Outlook 2024: Peaks or Plateaus? 2024. Available online: https://www.rff.org/publications/reports/global-energy-outlook-2024/ (accessed on 10 June 2024).
- IEA. GlobalEnergyReview2021. Available online: https://www.iea.org/reports/global-energy-review-2021 (accessed on 10 June 2024).
- Bremermann, H.J. Optimization through Evolution and Recombination. In Self-Organizing Systems; Yovits, M.C., Jacobim, G.T., Goldstein, G.D., Eds.; Spartan Books: Washington, DC, USA, 1962; pp. 93–106. [Google Scholar]
- Bremermann, H.J. Quantum noise and information. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1967; Volume 4, pp. 15–20. [Google Scholar]
- Gorelik, G. Bremermann’s Limit and cGh-physics. arXiv 2009, arXiv:0910.3424. [Google Scholar] [CrossRef]
- Top500A, Frontier-HPE Cray EX235A, AMD Optimized 3RD Generation EPYC 64C 2GHZ, AMD Instinct MI250X, SLINGSHOT-11. 2024. Available online: https://top500.org/system/180047/ (accessed on 15 May 2024).
- Top500B, Bluegene/L-Eserver Blue Gene Solution. 2024. Available online: https://top500.org/system/174210/ (accessed on 15 May 2024).
- Top500C, JEDI-Bullsequana XH3000, Grace Hopper Superchip 72C 3GHZ, NVIDIA GH200 Superchip, Quad-Rail NVIDIA Infiniband NDR200. 2024. Available online: https://top500.org/system/180269/ (accessed on 15 May 2024).
- Dongarra, J. Frequently Asked Questions on the Linpack Benchmark and Top500. 2007. Available online: https://www.netlib.org/utk/people/JackDongarra/faq-linpack.html (accessed on 19 January 2024).
- JVA Initiative Committee and Lowa State University, ATANASOFF BERRY COMPUTER. 2011. Available online: https://jva.cs.iastate.edu/operation.php (accessed on 12 June 2024).
- Freiberger, P.A.; Swaine, M.R. “Atanasoff-Berry Computer”. Encyclopedia Britannica. 20 March 2023. Available online: https://www.britannica.com/technology/Atanasoff-Berry-Computer (accessed on 11 June 2024).
- Calero, C.; Mancebo, J.; Garcia, F.; Moraga, M.A.; Berna, J.A.G.; Fernandez-Aleman, J.L.; Toval, A. 5Ws of green and sustainable software. Tsinghua Sci. Technol. 2020, 25, 401–414. [Google Scholar] [CrossRef]
- Gottschalk, M.; Jelschen, J.; Winter, A. Energy-Efficient Code by Refactoring. Softwaretechnik-Trends 2013, 33. Available online: https://api.semanticscholar.org/CorpusID:15332418 (accessed on 24 September 2024). [CrossRef]
- Sanlıalp, İ.; Öztürk, M.M.; Yiğit, T. Energy Efficiency Analysis of Code Refactoring Techniques for Green and Sustainable Software in Portable Devices. Electronics 2022, 11, 442. [Google Scholar] [CrossRef]
- Anwar, H.; Pfahl, D.; Srirama, S.N. Evaluating the impact of code smell refactoring on the energy consumption of Android applications. In Proceedings of the 2019 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Kallithea, Greece, 28–30 August 2019; pp. 82–86. [Google Scholar] [CrossRef]
- Noman, H.; Mahoto, N.; Bhatti, S.; Rajab, A.; Shaikh, A. Towards sustainable software systems: A software sustainability analysis framework. Inf. Softw. Technol. 2024, 169, 107411. [Google Scholar] [CrossRef]
- Heldal, R.; Nguyen, N.; Moreira, A.; Lago, P.; Duboc, L.; Betz, S.; Coroamă, V.C.; Penzenstadler, B.; Porras, J.; Capilla, R.; et al. Sustainability competencies and skills in software engineering: An industry perspective. J. Syst. Softw. 2024, 211, 111978. [Google Scholar] [CrossRef]
- Venters, C.C.; Capilla, R.; Nakagawa, E.Y.; Betz, S.; Penzenstadler, B.; Crick, T.; Brooks, I. Sustainable software engineering: Reflections on advances in research and practice. Inf. Softw. Technol. 2023, 164, 107316. [Google Scholar] [CrossRef]
- Martínez-Fernández, S.; Franch, X.; Durán, F. Towards green AI-based software systems: An architecture-centric approach (GAISSA). In Proceedings of the 2023 49th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Durres, Albania, 6–8 September 2023; pp. 432–439. [Google Scholar] [CrossRef]
- Penev, K.; Littlefair, G. Free Search—A comparative analysis. Inf. Sci. 2005, 172, 173–193. [Google Scholar] [CrossRef]
- Penev, K.; Gegov, A. (Eds.) Free Search of Real Value or How to Make Computers Think; BookSurge Publishing: Charleston, SC, USA, 2008; ISBN 978-0955894800. [Google Scholar]
- Vasileva, V.; Penev, K. Free search of global value. In Proceedings of the 2012 6th IEEE International Conference Intelligent Systems, Sofia, Bulgaria, 6–8 September 2012; pp. 425–430. [Google Scholar] [CrossRef]
- Penev, K. Free Search in Multidimensional Space M. In Large-Scale Scientific Computing; Lirkov, I., Margenov, S., Eds.; LSSC 2017. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 10665, pp. 399–407. [Google Scholar] [CrossRef]
- Penev, K. An Optimal Value for 100 000-Dimensional Michalewicz Test. 2022. Available online: https://pure.solent.ac.uk/files/33733992/100_000_dimensional_Michalewicz_test_2.pdf (accessed on 12 June 2024).
- Washizaki, H.; Khomh, F.; Gueheneuc, Y.; Takeuchi, H.; Natori, N.; Doi, T.; Okuda, S. Software-Engineering Design Patterns for Machine Learning Applications. Computer 2022, 55, 30–39. [Google Scholar] [CrossRef]
- Guldner, A.; Bender, R.; Calero, C.; Fernando, G.S.; Funke, M.; Gröger, J.; Hilty, L.M.; Hörnschemeyer, J.; Hoffmann, G.; Junger, D.; et al. Development and evaluation of a reference measurement model for assessing the resource and energy efficiency of software products and components—Green Software Measurement Model (GSMM). Future Gener. Comput. Syst. 2024, 155, 402–418. [Google Scholar] [CrossRef]
- Koedijk, L.; Oprescu, A. Finding Significant Differences in the Energy Consumption when Comparing Programming Languages and Programs. In Proceedings of the 2022 International Conference on ICT for Sustainability (ICT4S), Plovdiv, Bulgaria, 13–17 June 2022; pp. 1–12. [Google Scholar] [CrossRef]
- Wu, C.; Raghavendra, R.; Gupta, U.; Acun, B.; Ardalani, N.; Maeng, K.; Chang, G.; Behram, F.A.; Huang, J.; Bai, C.; et al. Sustainable AI: Environmental Implications, Challenges and Opportunities. arXiv 2021, arXiv:2111.00364. [Google Scholar] [CrossRef]
- Patterson, D.; Gonzalez, J.; Le, Q.; Liang, C.; Munguia, L.; Rothchild, D.; So, D.; Texier, M.; Dean, J. Carbon Emissions and Large Neural Network Training. arXiv 2021, arXiv:2104.10350. [Google Scholar] [CrossRef]
- EU. Regulation (EU) 2020/852 of the European Parliament and of the Council of 18 June 2020 on the Establishment of a Framework to Facilitate Sustainable Investment, and Amending Regulation (EU) 2019/2088 (Text with EEA relevance). Off. J. Eur. Communities 2020, 198, 13–43. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020R0852&from=EN (accessed on 13 June 2024).
- EU, AI Act. 2024. Available online: https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai (accessed on 13 June 2024).
- Darwin, C. On the Origin of Species by Means of Natural Selection. New York: D. Appleton and Company, 443 & 445 Broadway. MDCCCLXI. Available online: https://darwin-online.org.uk/converted/pdf/1861_OriginNY_F382.pdf (accessed on 13 June 2024).
- Pinto, P.; Bispo, J.; Cardoso, J.M.P.; Barbosa, J.G.; Gadioli, D.; Palermo, G.; Martinovic, J.; Golasowski, M.; Slaninova, K.; Cmar, R.; et al. Pegasus: Performance Engineering for Software Applications Targeting HPC Systems. IEEE Trans. Softw. Eng. 2022, 48, 732–754. [Google Scholar] [CrossRef]
- GG, Sorting Algorithms. 2024. Available online: https://www.geeksforgeeks.org/sorting-algorithms/ (accessed on 13 June 2024).
- Penev, K. Free Search–comparative analysis 100. Int. J. Metaheuristics 2014, 3, 118–132. [Google Scholar] [CrossRef]
- Jain, S.; Saha, A. Improving and comparing performance of machine learning classifiers optimized by swarm intelligent algorithms for code smell detection. Sci. Comput. Program. 2024, 237, 103140. [Google Scholar] [CrossRef]
- Deng, L. Artificial Intelligence in the Rising Wave of Deep Learning: The Historical Path and Future Outlook [Perspectives]. IEEE Signal Process. Mag. 2018, 35, 177–180. [Google Scholar] [CrossRef]
- Legg, S.; Hutter, M.A. A Collection of Definitions of Intelligence. In Proceedings of the 2007 Conference on Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006; IOS Press: Amsterdam, The Netherlands, 2007; pp. 17–24. [Google Scholar] [CrossRef]
- Griewank, A.O. Generalized Decent for Global Optimization. J. Optim. Theory Appl. 1981, 34, 11–39. [Google Scholar] [CrossRef]
- Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar] [CrossRef]
- Penev, K. Free Search in Multidimensional Space II. In Numerical Methods and Applications; Dimov, I., Fidanova, S., Lirkov, I., Eds.; NMA 2014, Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; Volume 8962, pp. 103–111. [Google Scholar] [CrossRef]
- Mühlenbein, H.; Schomisch, M.; Born, J. The Parallel Genetic Algorithm as Function Optimizer. Parallel Comput. 1991, 17, 619–632. [Google Scholar] [CrossRef]
- Rosenbrock, H. An automate method for finding the greatest or least value of a function. Comput. J. 1960, 3, 175–184. [Google Scholar] [CrossRef]
- Schwefel, H.P. Numerical Optimization of Computer Models; John Wiley & Sons: Chichester, UK, 1981. [Google Scholar]
- De Jong, K. An Analysis of the Behaviour of a Class of Genetic Adaptive Systems. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1975. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimisation. In Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Penev, K. Adaptive Heuristic Applied to Large Constraint Optimisation Problem. In Large-Scale Scientific Computing; Lirkov, I., Margenov, S., Waśniewski, J., Eds.; LSSC 2007. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 4818. [Google Scholar] [CrossRef]
- GMM-DDS108 (KWE-PM01) Digital Power Consumption Energy Meter UK Plug Socket. 2024. Available online: https://testmeter.sg/webshaper/pcm/files/Data%20Sheet/GMM-DDS108-KWE-PM01-UK.pdf (accessed on 17 June 2024).
- CUPID, CPU-Z for Windows® x86/x64. 2024. Available online: https://www.cpuid.com/softwares/cpu-z.html (accessed on 17 June 2024).
- CoreTemp, Core Temp 1.18.1. 2024. Available online: https://www.alcpu.com/CoreTemp/ (accessed on 17 June 2024).
- Stroll, A.; Martinich, A.P. “Epistemology”. Encyclopedia Britannica. 19 April 2024. Available online: https://www.britannica.com/topic/epistemology (accessed on 18 June 2024).
- Steup, M.; Neta, R. Epistemology. In The Stanford Encyclopedia of Philosophy (Spring 2024 Edition); Zalta, E.N., Nodelman, U., Eds.; Metaphysics Research Lab, Stanford University: Stanford, CA, USA, 2024; Available online: https://plato.stanford.edu/archives/spr2024/entries/epistemology/ (accessed on 24 September 2024).
- Zins, C. Conceptual approaches for defining data, information, and knowledge. J. Am. Soc. Inf. Sci. Technol. 2007, 58, 479–493. [Google Scholar] [CrossRef]
- Rowley, J. The wisdom hierarchy: Representations of the DIKW hierarchy. J. Inf. Sci. 2007, 33, 163–180. [Google Scholar] [CrossRef]
- Locke, J. An Essay Concerning Human Understanding; Hackett Publishing Company: Indianapolis, IN, USA, 1689; ISBN 0-87220-217-8. [Google Scholar]
- Nonaka, I.; Takeuchi, H. The Knowledge—Creating Company: How Japanese Companies Create the Dynamics of Information; Oxford University Press: Oxford, UK, 1995; ISBN 0-19-509269-4. [Google Scholar]
- Davenport, T.H.; Prusak, L. Working Knowledge: How Organisations Manage What They Know; Harvard Business School Press: Boston, MA, USA, 2000; ISBN 0-87584-655-6. [Google Scholar] [CrossRef]
- Bernardine, M.; Bonansea, B.M. Encyclopedia of Philosophy(Vol. 2. 2nd ed.). 2006. Available online: https://go.gale.com/ps/retrieve.do?tabID=T003&resultListType=RESULT_LIST&searchResultsType=SingleTab&retrievalId=262472d7-abd8-4772-9096-2e2b8b66c631&hitCount=5&searchType=AdvancedSearchForm¤tPosition=1&docId=GALE%7CCX3446800300&docType=Biography&s (accessed on 24 September 2024).
- Moody, E.A. Encyclopedia of Philosophy(Vol. 9. 2nd ed.). 2006. Available online: https://go.gale.com/ps/retrieve.do?tabID=T003&resultListType=RESULT_LIST&searchResultsType=SingleTab&retrievalId=4054c37d-abec-4cb0-959a-a0df936e4a4a&hitCount=69&searchType=AdvancedSearchForm¤tPosition=1&docId=GALE%7CCX3446802128&docType=Biography& (accessed on 24 September 2024).
Test | PSO | DE | FS |
---|---|---|---|
Time | Time | Time | |
Griewank | 01:45:00 | 00:41:00 | 00:14:00 |
Michalewicz | 02:44:00 | 01:46:00 | 01:02:00 |
Norwegian | 01:50:00 | 00:47:00 | 00:12:00 |
Rastrigin | 01:46:00 | 00:45:00 | 00:11:00 |
Rosenbrock | 01:39:00 | 00:40:00 | 00:05:00 |
Schwefel | 02:44:00 | 01:03:00 | 00:27:00 |
Step | 02:37:00 | 00:42:00 | 00:06:00 |
Test | PSO | DE | FS |
---|---|---|---|
Wh | Wh | Wh | |
Griewank | 33.25 | 12.98 | 4.43 |
Michalewicz | 51.93 | 33.57 | 19.63 |
Norwegian | 34.83 | 14.88 | 3.80 |
Rastrigin | 33.57 | 14.25 | 3.48 |
Rosenbrock | 31.35 | 12.67 | 1.58 |
Schwefel | 51.93 | 19.95 | 8.55 |
Step | 49.72 | 13.30 | 1.90 |
Test | DE/PSO | FS/PSO | FS/DE |
---|---|---|---|
% | % | % | |
Griewank | 39% | 13% | 34% |
Michalewicz | 65% | 38% | 58% |
Norwegian | 43% | 11% | 26% |
Rastrigin | 42% | 10% | 24% |
Rosenbrock | 40% | 5% | 13% |
Schwefel | 38% | 16% | 43% |
Step | 27% | 4% | 14% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penev, K.; Gegov, A.; Isiaq, O.; Jafari, R. Energy Efficiency Evaluation of Artificial Intelligence Algorithms. Electronics 2024, 13, 3836. https://doi.org/10.3390/electronics13193836
Penev K, Gegov A, Isiaq O, Jafari R. Energy Efficiency Evaluation of Artificial Intelligence Algorithms. Electronics. 2024; 13(19):3836. https://doi.org/10.3390/electronics13193836
Chicago/Turabian StylePenev, Kalin, Alexander Gegov, Olufemi Isiaq, and Raheleh Jafari. 2024. "Energy Efficiency Evaluation of Artificial Intelligence Algorithms" Electronics 13, no. 19: 3836. https://doi.org/10.3390/electronics13193836
APA StylePenev, K., Gegov, A., Isiaq, O., & Jafari, R. (2024). Energy Efficiency Evaluation of Artificial Intelligence Algorithms. Electronics, 13(19), 3836. https://doi.org/10.3390/electronics13193836