Carrier Mobility Enhancement in Ultrathin-Body InGaAs-on-Insulator n-Channel Metal-Oxide-Semiconductor Field-Effect Transistors Based on Dual-Gate Modulation
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rudenko, T.; Nazarov, A.; Yu, R.; Barraud, S.; Cherkaoui, K.; Razavi, P.; Fagas, G. Electron mobility in heavily doped junctionless nanowire SOI MOSFETs. Microelectron. Eng. 2013, 109, 326–329. [Google Scholar] [CrossRef]
- Toriumi, A.; Nishimura, T. Germanium CMOS potential from material and process perspectives: Be more positive about germanium. Jpn. J. Appl. Phys. 2017, 57, 010101. [Google Scholar] [CrossRef]
- Krishnamohan, T.; Kim, D.; Raghunathan, S.; Saraswat, K. Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) with record high drive currents and ≪60 mV/dec subthreshold slope. In Proceedings of the 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2008; pp. 1–3. [Google Scholar]
- Illarionov, Y.Y.; Knobloch, T.; Jech, M.; Lanza, M.; Akinwande, D.; Vexler, M.I.; Mueller, T.; Lemme, M.C.; Fiori, G.; Schwierz, F.; et al. Insulators for 2D nanoelectronics: The gap to bridge. Nat. Commun. 2020, 11, 3385. [Google Scholar] [CrossRef] [PubMed]
- Convertino, C.; Zota, C.B.; Schmid, H.; Caimi, D.; Czornomaz, L.; Ionescu, A.M.; Moselund, K.E. A hybrid III–V tunnel FET and MOSFET technology platform integrated on silicon. Nat. Electron. 2021, 4, 162–170. [Google Scholar] [CrossRef]
- Del Alamo, J.A. Nanometre-scale electronics with III–V compound semiconductors. Nature 2011, 479, 317–323. [Google Scholar] [CrossRef]
- Lin, J.; Lee, S.; Oh, H.J.; Yang, W.; Lo, G.Q.; Kwong, D.L.; Chi, D.Z.c. Plasma PH3-passivated high mobility inversion InGaAs MOSFET fabricated with self-aligned gate-first process and HfO2/TaN gate stack. In Proceedings of the 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2008; pp. 1–4. [Google Scholar]
- Xuan, Y.; Wu, Y.Q.; Ye, P.D. High-performance inversion-type enhancement-mode InGaAs MOSFET with maximum drain current exceeding 1 A/mm. IEEE Electron Device Lett. 2008, 29, 294–296. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Q.; Tang, C.W.; Lau, K.M. Inverted-type InGaAs metal–oxide–semiconductor high-electron-mobility transistor on Si substrate with maximum drain current exceeding 2 A/mm. Appl. Phys. Express 2012, 5, 104201. [Google Scholar] [CrossRef]
- Kim, S.K.; Geum, D.M.; Shim, J.P.; Kim, C.Z.; Kim, H.J.; Song, J.D.; Choi, W.J.; Choi, S.; Kim, D.H.; Kim, S.; et al. Fabrication and characterization of Pt/Al2O3/Y2O3/In0. 53Ga0. 47As MOSFETs with low interface trap density. Appl. Phys. Lett. 2017, 110, 043501. [Google Scholar] [CrossRef]
- Takagi, S.; Takenaka, M. Prospective and critical issues of III-V/Ge CMOS on Si platform. ECS Trans. 2011, 35, 279–298. [Google Scholar] [CrossRef]
- Caimi, D.; Schmid, H.; Morf, T.; Mueller, P.; Sousa, M.; Moselund, K.E.; Zota, C.B. III-V-on-Si transistor technologies: Performance boosters and integration. Solid-State Electron. 2021, 185, 108077. [Google Scholar] [CrossRef]
- Fiorenza, J.G.; Park, J.S.; Hydrick, J.; Li, J.; Li, J.; Curtin, M.; Carroll, M.; Lochtefeld, A. Aspect ratio trapping: A unique technology for integrating Ge and III-Vs with silicon CMOS. ECS Trans. 2010, 33, 963. [Google Scholar] [CrossRef]
- Schmid, H.; Borg, M.; Moselund, K.; Gignac, L.; Breslin, C.M.; Bruley, J.; Cutaia, D.; Riel, H. Template-assisted selective epitaxy of III–V nanoscale devices for co-planar heterogeneous integration with Si. Appl. Phys. Lett. 2015, 106, 233101. [Google Scholar] [CrossRef]
- Convertino, C.; Zota, C.; Schmid, H.; Caimi, D.; Sousa, M.; Moselund, K.; Czornomaz, L. InGaAs FinFETs directly integrated on silicon by selective growth in oxide cavities. Materials 2018, 12, 87. [Google Scholar] [CrossRef] [PubMed]
- Djara, V.; Deshpande, V.; Uccelli, E.; Daix, N.; Caimi, D.; Rossel, C.; Sousa, M.; Siegwart, H.; Marchiori, C.; Lubyshev, D.; et al. An InGaAs on Si platform for CMOS with 200 mm InGaAs-OI substrate, gate-first, replacement gate planar and FinFETs down to 120 nm contact pitch. In Proceedings of the 2015 Symposium on VLSI Technology (VLSI Technology), Kyoto, Japan, 16–18 June 2015; pp. T176–T177. [Google Scholar]
- Jeong, J.; Geum, D.M.; Kim, S. Heterogeneous and monolithic 3D integration technology for mixed-signal ICs. Electronics 2022, 11, 3013. [Google Scholar] [CrossRef]
- Nguyen, A.H.T.; Nguyen, M.C.; Nguyen, A.D.; Jeon, S.J.; Park, N.H.; Lee, J.H.; Choi, R. Formation techniques for upper active channel in monolithic 3D integration: An overview. Nano Converg. 2024, 11, 5. [Google Scholar] [CrossRef]
- Takagi, S.; Yokoyama, M.; Takagi, H.; Urabe, Y.; Yasuda, T.; Yamada, H.; Hata, H.; Takenaka, M. III-V-On-Insulator MOSFETs on Si Substrates Fabricated by Direct Bonding Technique. ECS Trans. 2010, 33, 359. [Google Scholar] [CrossRef]
- Tang, X.Y.; Lu, J.W.; Zhang, R.; Wu, W.R.; Liu, C.; Shi, Y.; Huang, Z.Q.; Kong, Y.C.; Zhao, Y. Positive Bias Temperature Instability and Hot Carrier Injection of Back Gate Ultra-thin-body In0.53Ga0.47As-on-Insulator n-Channel Met-al-Oxide-Semiconductor Field-Effect Transistor. Chin. Phys. Lett. 2015, 32, 117302. [Google Scholar] [CrossRef]
- Xuan, Y.; Wu, Y.Q.; Lin, H.C.; Shen, T.; Peide, D.Y. Submicrometer Inversion-Type Enhancement-Mode InGaAs MOSFET With Atomic-Layer-Deposited Al2O3 as Gate Dielectric. IEEE Electron Device Lett. 2007, 28, 935–938. [Google Scholar] [CrossRef]
- Yokoyama, M.; Iida, R.; Kim, S.; Taoka, N.; Urabe, Y.; Takagi, H.; Yasuda, H.; Yamada, H.; Fukuhara, N.; Hata, M.; et al. Sub-10-nm extremely thin body InGaAs-on-insulator MOSFETs on Si wafers with ultrathin Al2O3 buried oxide layers. IEEE Electron Device Lett. 2011, 32, 1218–1220. [Google Scholar] [CrossRef]
- Kim, S.H.; Yokoyama, M.; Taoka, N.; Iida, R.; Lee, S.; Nakane, R.; Urabe, Y.; Miyata, N.; Yasuda, N.; Yamada, H.; et al. Self-aligned metal source/drain InxGa1− xAs n-MOSFETs using Ni-InGaAs alloy. In Proceedings of the 2010 International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 26.6.1–26.6.4. [Google Scholar]
- Wu, W.; Wu, H.; Zhang, J.; Si, M.; Zhao, Y.; Peide, D.Y. Carrier mobility enhancement by applying back-gate bias in Ge-on-insulator MOSFETs. IEEE Electron Device Lett. 2017, 39, 176–179. [Google Scholar] [CrossRef]
- Rudenko, T.; Kilchytska, V.; Burignat, S.; Raskin, J.P.; Andrieu, F.; Faynot, O.; Tiec, Y.; Landry, K.; Nazarov, A.; Lysenko, Y.S.; et al. Experimental study of transconductance and mobility behaviors in ultra-thin SOI MOSFETs with standard and thin buried oxides. Solid-State Electron. 2010, 54, 164–170. [Google Scholar] [CrossRef]
- Ohata, A.; Cassé, M.; Cristoloveanu, S. Front-and back-channel mobility in ultrathin SOI-MOSFETs by front-gate split CV method. Solid-State Electron. 2007, 51, 245–251. [Google Scholar] [CrossRef]
- Schroder, D.K. Semiconductor Material and Device Characterization, 3rd ed.; Wiley Interscience: Hoboken, NJ, USA, 2006; pp. 497–498. [Google Scholar]
- Zheng, Z.; Yu, X.; Zhang, Y.; Xie, M.; Cheng, R.; Zhao, Y. Back-gate modulation in UTB GeOI pMOSFETs with advanced substrate fabrication technique. IEEE Trans. Electron Devices 2018, 65, 895–900. [Google Scholar] [CrossRef]
- Carapezzi, S.; Caruso, E.; Gnudi, A.; Palestri, P.; Reggiani, S.; Gnani, E. TCAD mobility model of III-V short-channel double-gate FETs including ballistic corrections. IEEE Trans. Electron Devices 2017, 64, 4882–4888. [Google Scholar] [CrossRef]
- Beneventi, G.B.; Reggiani, S.; Gnudi, A.; Gnani, E.; Alian, A.; Collaert, N.; Mocuta, A.; Thean, A.; Baccarani, G. A TCAD low-field electron mobility model for thin-body InGaAs on InP MOSFETs calibrated on experimental characteristics. IEEE Trans. Electron Devices 2015, 62, 3645–3652. [Google Scholar] [CrossRef]
- Franco, J.; Putcha, V.; Vais, A.; Sioncke, S.; Waldron, N.; Zhou, D.; Rzapa, G.; Roussel, P.J.; Groeseneken, G.; Heyns, M.; et al. Characterization of oxide defects in InGaAs MOS gate stacks for high-mobility n-channel MOSFETs. In Proceedings of the 2017 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2–6 December 2017; pp. 7.5.1–7.5.4. [Google Scholar]
- Tang, K.; Winter, R.; Zhang, L.; Droopad, R.; Eizenberg, M.; McIntyre, P.C. Border trap reduction in Al2O3/InGaAs gate stacks. Appl. Phys. Lett. 2015, 107, 202102. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Liu, Y.; Han, Z.; Hua, T. Carrier Mobility Enhancement in Ultrathin-Body InGaAs-on-Insulator n-Channel Metal-Oxide-Semiconductor Field-Effect Transistors Based on Dual-Gate Modulation. Electronics 2024, 13, 3893. https://doi.org/10.3390/electronics13193893
Tang X, Liu Y, Han Z, Hua T. Carrier Mobility Enhancement in Ultrathin-Body InGaAs-on-Insulator n-Channel Metal-Oxide-Semiconductor Field-Effect Transistors Based on Dual-Gate Modulation. Electronics. 2024; 13(19):3893. https://doi.org/10.3390/electronics13193893
Chicago/Turabian StyleTang, Xiaoyu, Yujie Liu, Zhezhe Han, and Tao Hua. 2024. "Carrier Mobility Enhancement in Ultrathin-Body InGaAs-on-Insulator n-Channel Metal-Oxide-Semiconductor Field-Effect Transistors Based on Dual-Gate Modulation" Electronics 13, no. 19: 3893. https://doi.org/10.3390/electronics13193893
APA StyleTang, X., Liu, Y., Han, Z., & Hua, T. (2024). Carrier Mobility Enhancement in Ultrathin-Body InGaAs-on-Insulator n-Channel Metal-Oxide-Semiconductor Field-Effect Transistors Based on Dual-Gate Modulation. Electronics, 13(19), 3893. https://doi.org/10.3390/electronics13193893