Design and Experimental Validation of a High-Efficiency Sequential Load Modulated Balanced Amplifier
Abstract
:1. Introduction
2. Basic Theory of SLMBA
3. Design of SLMBA
3.1. Design Proposal Analysis
3.2. Design of the CA
3.3. Design of a 3 dB Couple and Power Divider
3.4. Design of the BAs
3.5. SLMBA Design
4. Measurement Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Popovic, Z. Amping Up the PA for 5G: Efficient GaN Power Amplifiers with Dynamic Supplies. IEEE Microw. Mag. 2017, 18, 137–149. [Google Scholar] [CrossRef]
- Shafi, M.; Molisch, A.F.; Smith, P.J.; Haustein, T.; Zhu, P.; De Silva, P.; Tufvesson, F.; Benjebbour, A.; Wunder, G. 5G: A Tutorial Overview of Standards, Trials, Challenges, Deployment, and Practice. IEEE J. Sel. Areas Commun. 2017, 35, 1201–1221. [Google Scholar] [CrossRef]
- Cidronali, A.; Mercanti, M.; Giovannelli, N.; Maddio, S.; Manes, G. On the Signal Probability Distribution Conscious Characterization of GaN Devices for Optimum Envelope Tracking PA Design. IEEE Microw. Wirel. Components Lett. 2013, 23, 380–382. [Google Scholar] [CrossRef]
- Asbeck, P.; Popovic, Z. ET comes of age: Envelope tracking for higher-efficiency power amplifiers. IEEE Microw. Mag. 2016, 17, 16–25. [Google Scholar] [CrossRef]
- Choi, J.; Kang, D.; Kim, D.; Kim, B. Optimized envelope tracking operation of Doherty power amplifier for high efficiency over an extended dynamic range. IEEE Trans. Microw. Theory Tech. 2009, 57, 1508–1515. [Google Scholar] [CrossRef]
- Cappello, T.; Pednekar, P.H.; Florian, C.; Popovic, Z.; Barton, T.W. Supply Modulation of a Broadband Load Modulated Balanced Amplifier. In Proceedings of the 2018 IEEE/MTT-S International Microwave Symposium—IMS, Philadelphia, PA, USA, 10–15 June 2018; pp. 304–307. [Google Scholar]
- Jeon, M.-S.; Woo, J.-L.; Park, S.; Kwon, Y. A Pulsed Dynamic Load Modulation Technique for High-Efficiency Linear Transmitters. IEEE Trans. Microw. Theory Tech. 2015, 63, 2854–2866. [Google Scholar] [CrossRef]
- Nam, J.; Shin, J.-H.; Kim, B. A handset power amplifier with high efficiency at a low level using load-modulation technique. IEEE Trans. Microw. Theory Tech. 2005, 53, 2639–2644. [Google Scholar]
- Doherty, W. A new high efficiency power amplifier for modulated waves. Proc. IRE 1936, 24, 1163–1182. [Google Scholar] [CrossRef]
- Chen, K.; Peroulis, D. Design of adaptive highly efficient GaN power amplifier for octave-bandwidth application and dynamic load modulation. IEEE Trans. Microw. Theory Tech. 2012, 60, 1829–1839. [Google Scholar] [CrossRef]
- Du, X.; Helaoui, M.; You, C.J.; Li, X.; Zhao, Y.; Cai, J.; Ghannouchi, F.M. Analytical Design Space of Power Amplifiers Including the Class-A/B/J Continuum for Dynamic Load Modulation. IEEE Access 2019, 7, 71933–71942. [Google Scholar] [CrossRef]
- Cappello, T.; Pednekar, P.; Florian, C.; Cripps, S.; Popovic, Z.; Barton, T.W. Supply and load modulated balanced amplifier for efficient broadband 5G base stations. IEEE Trans. Microw. Theory Tech. 2019, 67, 3122–3133. [Google Scholar] [CrossRef]
- Fang, X.H.; Cheng, K.-K.M. Extension of high-efficiency range of Doherty amplifier by using complex combining load. IEEE Trans. Microw. Theory Tech. 2014, 62, 2038–2047. [Google Scholar] [CrossRef]
- Hasin, M.R.; Kitchen, J. Exploiting phase for extended efficiency range in symmetrical Doherty power amplifiers. IEEE Trans. Microw. Theory Tech. 2019, 67, 3455–3463. [Google Scholar] [CrossRef]
- Shi, W.; He, S.; Gideon, N. Extending high-efficiency power range of symmetrical Doherty power amplifiers by taking advantage of peaking stage. IET Microw. Antennas Propag. 2017, 11, 1296–1302. [Google Scholar] [CrossRef]
- Choi, W.; Kang, H.; Oh, H.; Hwang, K.C.; Lee, K.-Y.; Yang, Y. Doherty power amplifier based on asymmetric cells with complex combining load. IEEE Trans. Microw. Theory Tech. 2021, 69, 2336–2344. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Cheng, K.-K.M.; Zhai, C.; Fang, X.-H. Peak-currentratio-enhanced compact symmetrical Doherty amplifier design by using active harmonic control. IEEE Trans. Microw. Theory Tech. 2021, 69, 3158–3170. [Google Scholar] [CrossRef]
- Cripps, S. RF Power Amplifiers for Wireless Communications, 2nd ed.; Artech: Norwood, MA, USA, 2006. [Google Scholar]
- Shepphard, D.J.; Powell, J.; Cripps, S.C. An efficient broadband reconfigurable power amplifier using active load modulation. IEEE Microw. Wirel. Components Lett. 2016, 26, 443–445. [Google Scholar] [CrossRef]
- Quaglia, R.; Cripps, S. A load modulated balanced amplifier for telecom applications. IEEE Trans. Microw. Theory Tech. 2017, 66, 1328–1338. [Google Scholar] [CrossRef]
- Xu, Y.; Pang, J.; Wang, X.; Zhu, A. Three-stage load modulated power amplifier with efficiency enhancement at power back-off. IEEE Trans. Microw. Theory Tech. 2021, 69, 3107–3119. [Google Scholar] [CrossRef]
- Sun, J.; Lin, F.; Sun, H.; Chen, W.; Negra, R. Broadband three stage pseudo load modulated balanced amplifier with power back-off efficiency enhancement. IEEE Trans. Microw. Theory Tech. 2022, 70, 2710–2722. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, K. Hybrid Asymmetrical Load Modulated Balanced Amplifier with Wide Bandwidth and Three-Way-Doherty Efficiency Enhancement. IEEE Microw. Wirel. Components Lett. 2021, 31, 721–724. [Google Scholar] [CrossRef]
- Huang, J.; Fan, Z.; Cai, J. Design of A High Efficiency Sequential Load Modulated Balanced Amplifier Based on Multiple Multi-Objective Bayesian Optimization. IEEE Trans. Comput.-Aided Des. Integr. Circuits Systems 2024. [Google Scholar] [CrossRef]
- Pang, J.; Li, Y.; Li, M.; Zhang, Y.; Zhou, X.Y.; Dai, Z.; Zhu, A. Analysis and Design of Highly Efficient Wideband RF-Input Sequential Load Modulated Balanced Power Amplifier. IEEE Trans. Microw. Theory Tech. 2020, 68, 1741–1753. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, K. Pseudo-Doherty Load-Modulated Balanced Amplifier with Wide Bandwidth and Extended Power Back-Off Range. IEEE Trans. Microw. Theory Tech. 2020, 68, 3172–3183. [Google Scholar] [CrossRef]
- Fishler, D.; Popovic, Z.; Barton, T. Supply Modulation Behavior of a Doherty Power Amplifier. IEEE J. Microwaves 2021, 1, 508–512. [Google Scholar] [CrossRef]
- Xie, J.; Cheng, K.-K.M.; Wong, T.; Yu, P. Dual-Band Pseudo-Doherty Load Modulated Balanced Amplifier Design by Exploiting the Periodicity of Branch-line Coupler. In Proceedings of the 2023 53rd European Microwave Conference (EuMC), Berlin, Germany, 19–21 September 2023; pp. 275–278. [Google Scholar]
- Zeng, F.; An, J.X.; Zhou, G.; Li, W.; Wang, H.; Duan, T.; Jiang, L.; Yu, H. A Comprehensive Review of Recent Progress on GaN High Electron Mobility Transistors: Devices, Fabrication and Reliability. Electronics 2018, 7, 377. [Google Scholar] [CrossRef]
- Raffo, A.; Vadala, V.; Yamamoto, H.; Kikuchi, K.; Bosi, G.; Ui, N.; Inoue, K.; Vannini, G. A New Modeling Technique for Microwave Multicell Transistors Based on EM Simulations. IEEE Trans. Microw. Theory Tech. 2020, 68, 3100–3110. [Google Scholar] [CrossRef]
- Ramella, C.; Pirola, M.; Florian, C.; Colantonio, P. Space-Compliant Design of a Millimeter-Wave GaN-on-Si Stacked Power Amplifier Cell through Electro-Magnetic and Thermal Simulations. Electronics 2021, 10, 1784. [Google Scholar] [CrossRef]
- Scappaviva, F.; Bosi, G.; Biondi, A.; D’angelo, S.; Cariani, L.; Vadalà, V.; Raffo, A.; Resca, D.; Cipriani, E.; Vannini, G. Advances in Ku-Band GaN single chip front end for space SARs: From system specifications to technology selection. Electronics 2022, 11, 2998. [Google Scholar] [CrossRef]
- Crupi, G.; Latino, M.; Gugliandolo, G.; Marinković, Z.; Cai, J.; Bosi, G.; Raffo, A.; Fazio, E.; Donato, N. A Comprehensive Overview of the Temperature-Dependent Modeling of the High-Power GaN HEMT Technology Using mm-Wave Scattering Parameter Measurements. Electronics 2023, 12, 1771. [Google Scholar] [CrossRef]
- Bosi, G.; Raffo, A.; Vadalà, V.; Giofrè, R.; Crupi, G.; Vannini, G. A Thorough Evaluation of GaN HEMT Degradation under Realistic Power Amplifier Operation. Electronics 2023, 12, 2939. [Google Scholar] [CrossRef]
- Pednekar, P.H.; Barton, T.W. RF-input load modulated balanced amplifier. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 1730–1733. [Google Scholar]
- Cao, Y.; Lyu, H.; Chen, K. Load Modulated Balanced Amplifier with Reconfigurable Phase Control for Extended Dynamic Range. In Proceedings of the 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2–7 June 2019; pp. 1335–1338. [Google Scholar]
- Lyu, H.; Chen, K. Hybrid load-modulated balanced amplifier with high linearity and extended dynamic range. IEEE Microw. Wirel. Components Lett. 2021, 31, 1067–1070. [Google Scholar] [CrossRef]
- Chen, P.; Qi, L.; Zhao, Y.; Yu, L.; Yu, C. Multiobjective Bayesian optimization for a 15-dB back-off high-efficiency load modulated balanced amplifier design. Int. J. Numer. Model., Electron. Netw. Devices Fields 2024, 37, e3150. [Google Scholar] [CrossRef]
Freq. (GHz) | Load | Source |
---|---|---|
2.45 | Ω | Ω |
2.55 | Ω | Ω |
2.65 | Ω | Ω |
Frequency | 2.45 GHz | 2.55 GHz | 2.65 GHz |
Phase |
Ref./Year | Architecture | Freq. (GHz) | ||||
---|---|---|---|---|---|---|
[35] 2017 | RF-Input LMBA | 0.7–0.85 | 42 | 57–70 | 39–53 @ 6 dB | 35–40 @ 10 dB |
[36] 2019 | SLMBA | 2.4 | 43 | 69 | NAN | >50 @ 12 dB |
[37] 2021 | H-LMBA | 3.45–3.65 | 43 | 50–63 | 42.3–47 @ 6 dB | 42.3–47 @ 9 dB |
[21] 2021 | TS-LMBA | 3.3–3.6 | 44.5–45 | 66.9–70.1 | 51.2–62.1 @ 6 dB | 42.2–47.3 @ 10 dB |
[38] 2023 | RF-Input LMBA | 2.0 | 44.5 | 67 | 54 @ 9 dB | 52 @ 15 dB |
This work | SLMBA | 2.45–2.65 | 43~44.4 | 71.6~75% | 63.5~66% @ 6 dB | 51~52% @ 12 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, D.; Latino, M.; Crupi, G.; Cai, J. Design and Experimental Validation of a High-Efficiency Sequential Load Modulated Balanced Amplifier. Electronics 2024, 13, 3897. https://doi.org/10.3390/electronics13193897
Jin D, Latino M, Crupi G, Cai J. Design and Experimental Validation of a High-Efficiency Sequential Load Modulated Balanced Amplifier. Electronics. 2024; 13(19):3897. https://doi.org/10.3390/electronics13193897
Chicago/Turabian StyleJin, Dongxian, Mariangela Latino, Giovanni Crupi, and Jialin Cai. 2024. "Design and Experimental Validation of a High-Efficiency Sequential Load Modulated Balanced Amplifier" Electronics 13, no. 19: 3897. https://doi.org/10.3390/electronics13193897
APA StyleJin, D., Latino, M., Crupi, G., & Cai, J. (2024). Design and Experimental Validation of a High-Efficiency Sequential Load Modulated Balanced Amplifier. Electronics, 13(19), 3897. https://doi.org/10.3390/electronics13193897