Feedforward Control Strategy of a DC-DC Converter for an Off-Grid Hydrogen Production System Based on a Linear Extended State Observer and Super-Twisting Sliding Mode Control
Abstract
:1. Introduction
- (1)
- The feedforward control strategy based on linear extended state observer (LESO) and super-twisting sliding mode control (STSMC) for DAB converters is proposed in this paper.
- (2)
- The dynamic response characteristics and disturbance rejection of the direct current (DC) microgrid system utilizing DAB converters have been enhanced in this study.
- (3)
- The LESO + STSMC feedforward control strategy has been compared with traditional PI control and LESO+TSMC control, demonstrating the effectiveness of this control method in enhancing system transient stability.
2. Principles of the Dual Active Bridge (DAB) Converter and Construction of Simplified Models
2.1. DC Off-Grid Hydrogen System Structure
2.2. Principles of the DAB Converter
2.3. Reduced-Order Model of the DAB Converter
3. Feedforward Control Based on Linear Extended State Observer and Super-Twisting Sliding Mode Control
3.1. Current Feedforward Control Based on PI Control
3.2. Feedforward Control Strategy Based on LESO + STSMC
3.3. Stability Verification
4. Simulation Verification
5. Conclusions
- (1)
- Simulation results demonstrate that the proposed feedforward control based on LESO+STSMC effectively regulates the DC voltage of the DC off-grid hydrogen system with DAB converters. Compared with the ordinary PI control, the perturbation time is reduced by 3–20 times, and the amplitude of the fluctuation is reduced by 1–2 times. This is evident in reduced fluctuations in DC bus voltage, improved dynamic response time, and quicker recovery after faults.
- (2)
- This control strategy achieves rapid dynamic response of the DAB converter to external disturbances and enhances transient stability of the DC off-grid hydrogen system. It enables the system’s DC voltage to stabilize quickly during faults, maintaining normal system performance metrics.
- (3)
- Implementing LESO+STSMC as the feedforward control reduces the dependency on detailed models and parameters of the DAB, making it more suitable for engineering applications where structural and parameter uncertainties exist. Simulation results also affirm that STSMC is more suitable than TSMC for the dual active bridge DAB converter. Compared with TSMC control, STSMC reduces the disturbance time by 2–4 times and the fluctuation amplitude by 1–2 times.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, Q.; Shahidehpour, M.; Alabdulwahab, A.; Abusorrah, A. Flexible Division and Unification Control Strategies for Resilience Enhancement in Networked Microgrids. IEEE Trans. Power Syst. 2019, 35, 474–486. [Google Scholar] [CrossRef]
- Huang, M.; Ji, H.; Sun, J.; Wei, L.; Zha, X. Bifurcation-Based Stability Analysis of Photovoltaic-Battery Hybrid Power System. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 1055–1067. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Song, X.; Ju, Y. Large Signal Stability Analysis of Hybrid AC/DC Microgrids When a Single-Phase-to-Ground Fault Occurs. Electronics 2024, 13, 1232. [Google Scholar] [CrossRef]
- Guo, L.; Feng, Y.; Li, X.; Wang, C.; Li, Y. Stability Analysis and Research of Active Damping Method for DC Microgrids. Proceed-Ings CSEE 2016, 36, 927–936. [Google Scholar] [CrossRef]
- Xiaorong, Z.H.; Meng, X. Stability Analysis and Research of Active Damping Control Method for DC Microgrids. High Volt. Eng. 2020, 46, 1670–1681. [Google Scholar] [CrossRef]
- Moussa, H.; Martin, J.-P.; Pierfederici, S.; Nahid-Mobarakeh, B. Modeling and large signal stability analysis for is-landed AC-microgrids. In Proceedings of the 2017 IEEE Industry Applications Society Annual Meeting, Cincinnati, OH, USA, 1–5 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Wang, Y.; Zhu, L.; Guan, Y.; Chen, S.-Z.; Zhang, G.; Yang, L. A Dual-Active-Bridge with Half-Bridge Submodules DC Solid-State Transformer for DC Distribution Networks. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 1891–1904. [Google Scholar] [CrossRef]
- Choi, W.; Rho, K.-M.; Cho, B.-H. Fundamental Duty Modulation of Dual-Active-Bridge Converter for Wide-Range Operation. IEEE Trans. Power Electron. 2015, 31, 4048–4064. [Google Scholar] [CrossRef]
- Tong, A.; Hang, L.; Chung, H.S.-H.; Li, G. Using Sampled-Data Modeling Method to Derive Equivalent Circuit and Linearized Control Method for Dual-Active-Bridge Converter. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 9, 1361–1374. [Google Scholar] [CrossRef]
- Shan, Z.; Jatskevich, J.; Iu, H.H.-C.; Fernando, T. Simplified Load-Feedforward Control Design for Dual-Active-Bridge Converters with Current-Mode Modulation. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 2073–2085. [Google Scholar] [CrossRef]
- Nie, H.O.; Wensheng, S.O.G.; Mingyi, W.U. A Load Current Feedforward Control Scheme of Dual Active Bridge DC/DC Converters. Proc. CSEE 2016, 36, 2478–2485. [Google Scholar] [CrossRef]
- Song, W.; Hou, N.; Wu, M. Virtual Direct Power Control Scheme of Dual Active Bridge DC–DC Converters for Fast Dynamic Response. IEEE Trans. Power Electron. 2017, 33, 1750–1759. [Google Scholar] [CrossRef]
- Xiao, Z.; Lei, W.; Gao, G.; Zhang, X.; Hu, L. Dual-Terminal Voltage Feedforward Based Direct Power Control Scheme and Stability Analysis of Dual Active Bridge Converter in DC Microgrid Systems. IEEE Trans. Power Electron. 2022, 38, 4475–4492. [Google Scholar] [CrossRef]
- Dutta, S.; Hazra, S.; Bhattacharya, S. A Digital Predictive Current-Mode Controller for a Single-Phase High-Frequency Transformer-Isolated Dual-Active Bridge DC-to-DC Converter. IEEE Trans. Ind. Electron. 2016, 63, 5943–5952. [Google Scholar] [CrossRef]
- Askarian, I.; Bagawade, S.; Pahlevani, M.; Knight, A.M.; Bakhshai, A. Robust Digital Nonlinear Control System for Dual Active Bridge (DAB) DC/DC Converters With Asymmetric Half-Cycle Modulation. IEEE J. Emerg. Sel. Top. Ind. Electron. 2020, 1, 123–132. [Google Scholar] [CrossRef]
- Chen, L.; Gao, F.; Shen, K.; Wang, Z.; Tarisciotti, L.; Wheeler, P.; Dragicevic, T. Predictive Control Based DC Microgrid Stabilization With the Dual Active Bridge Converter. IEEE Trans. Ind. Electron. 2020, 67, 8944–8956. [Google Scholar] [CrossRef]
- Chen, L.; Shao, S.; Xiao, Q.; Tarisciotti, L.; Wheeler, P.W.; Dragičević, T. Model Predictive Control for Dual-Active-Bridge Converters Supplying Pulsed Power Loads in Naval DC Micro-Grids. IEEE Trans. Power Electron. 2019, 35, 1957–1966. [Google Scholar] [CrossRef]
- Tarisciotti, L.; Chen, L.; Shuai, S.; Dragicevic, T. Large signal stability analysis of DAB converter using Moving Discretized Control Set– Model Predictive Control. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 5922–5929. [Google Scholar] [CrossRef]
- Chen, L.; Lin, L.; Shao, S.; Gao, F.; Wang, Z.; Wheeler, P.W.; Dragicevic, T. Moving Discretized Control Set Model-Predictive Control for Dual-Active Bridge with the Triple-Phase Shift. IEEE Trans. Power Electron. 2019, 35, 8624–8637. [Google Scholar] [CrossRef]
- Tarisciotti, L.; Chen, L.; Shao, S.; Dragičević, T.; Wheeler, P.; Zanchetta, P. Finite Control Set Model Predictive Control for Dual Active Bridge Converter. IEEE Trans. Ind. Appl. 2021, 58, 2155–2165. [Google Scholar] [CrossRef]
- Jeung, Y.-C.; Lee, D.-C. Voltage and Current Regulations of Bidirectional Isolated Dual-Active-Bridge DC–DC Converters Based on a Double-Integral Sliding Mode Control. IEEE Trans. Power Electron. 2018, 34, 6937–6946. [Google Scholar] [CrossRef]
- Tiwary, N.; Naik, N.V.; Panda, A.K.; Narendra, A.; Lenka, R.K. A Robust Voltage Control of DAB Converter With Super-Twisting Sliding Mode Approach. IEEE J. Emerg. Sel. Top. Ind. Electron. 2022, 4, 288–298. [Google Scholar] [CrossRef]
- Shao, S.; Chen, L.; Shan, Z.; Gao, F.; Chen, H.; Sha, D.; Dragičević, T. Modeling and Advanced Control of Dual-Active-Bridge DC–DC Converters: A Review. IEEE Trans. Power Electron. 2021, 37, 1524–1547. [Google Scholar] [CrossRef]
- Evangelista, C.; Puleston, P.; Valenciaga, F.; Fridman, L.M. Lyapunov-Designed Super-Twisting Sliding Mode Control for Wind Energy Conversion Optimization. IEEE Trans. Ind. Electron. 2012, 60, 538–545. [Google Scholar] [CrossRef]
- Tan, C.; Li, C.; Liu, Z.; Dian, R. Active Disturbance Rejection Control Combined with Current-Stress-Optimization for Dual Active Bridge DC-DC Converter. In Proceedings of the 2023 26th International Conference on Electrical Machines and Systems (ICEMS), Zhuhai, China, 5–8 November 2023; pp. 3251–3256. [Google Scholar] [CrossRef]
- Gong, S.; Li, X.; Han, J.; Sun, Y.; Xu, G.; Jiang, Y.; Huang, S. Sliding Mode Control-Based Decoupling Scheme for Quad-Active Bridge DC–DC Converter. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 10, 1153–1164. [Google Scholar] [CrossRef]
- Lin, H.; Chung, H.S.-H.; Shen, R.; Xiang, Y. Enhancing Stability of DC Cascaded Systems With CPLs Using MPC Combined With NI and Accounting for Parameter Uncertainties. IEEE Trans. Power Electron. 2024, 39, 5225–5238. [Google Scholar] [CrossRef]
- Lin, H.; Cai, C.; Chen, J.; Gao, Y.; Vazquez, S.; Li, Y. Modulation and Control Independent Dead-Zone Compensation for H-Bridge Converters: A Simplified Digital Logic Scheme. IEEE Trans. Ind. Electron. 2024, 71, 15239–15244. [Google Scholar] [CrossRef]
- Meng, H.; Wu, Y. Physical Experiment Simulation Framework Based on Matlab. In Proceedings of the 2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT), Bengaluru, India, 15–16 March 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Moreno, J.A.; Osorio, M. Strict Lyapunov Functions for the Super-Twisting Algorithm. IEEE Trans. Autom. Control 2012, 57, 1035–1040. [Google Scholar] [CrossRef]
Parameters | Data |
---|---|
DC-side capacitance C1/F | 0.1 |
Frequency f/Hz | 1000 |
Transformer turns ratio n | 1340:1000 |
Transformer leakage inductance L/H | 0.00143 |
BESS operating voltage ux/V | 750 |
Control parameters kvp | 0.12 |
Control parameters kip | 2 |
Photovoltaic power Pg/kW | 80 |
Wind turbine power Pf/kW | 290 |
Electrolyzer power Pd/kW | 400 |
Load power PCL/kW | 30 |
Bus voltage udc/V | 1000 |
LESO | TSMC | STSMC | |||
---|---|---|---|---|---|
Parameters Variables | Control Parameters | Parameters Variables | Control Parameters | Parameters Variables | Control Parameters |
b0 | 351.4 | p | 11 | H1 | 2 |
l1 | 15,000 | q | 9 | H2 | 5 |
l2 | 1000 | α | 0.2 | C1 | 3 |
l3 | 1500 | β | 0.1 | ||
C1 | 3 |
Condition | Control | Voltage Fluctuation Parameter after Perturbation | |
---|---|---|---|
Time to Reach Stabilization (s) | Maximum Fluctuation Amplitude (%) | ||
No Disturbance | PI | 10.93 | 9.58 |
LESO+TSMC | 8.24 | 8.30 | |
LESO+STSMC | 3.40 | 5.15 | |
Light intensity reduction | PI | 26.98 | 2.77 |
LESO+TSMC | 2.66 | 2.34 | |
LESO+STSMC | 1.70 | 1.58 | |
Wind speed decrease | PI | 18.68 | 2.40 |
LESO+TSMC | 3.76 | 2.15 | |
LESO+STSMC | 2.17 | 1.30 | |
Sudden load merge | PI | 29.06 | 4.32 |
LESO+TSMC | 5.30 | 3.59 | |
LESO+STSMC | 1.35 | 2.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Z.; Li, L.; Zhang, H. Feedforward Control Strategy of a DC-DC Converter for an Off-Grid Hydrogen Production System Based on a Linear Extended State Observer and Super-Twisting Sliding Mode Control. Electronics 2024, 13, 3934. https://doi.org/10.3390/electronics13193934
Kang Z, Li L, Zhang H. Feedforward Control Strategy of a DC-DC Converter for an Off-Grid Hydrogen Production System Based on a Linear Extended State Observer and Super-Twisting Sliding Mode Control. Electronics. 2024; 13(19):3934. https://doi.org/10.3390/electronics13193934
Chicago/Turabian StyleKang, Zhongjian, Longchen Li, and Hongyang Zhang. 2024. "Feedforward Control Strategy of a DC-DC Converter for an Off-Grid Hydrogen Production System Based on a Linear Extended State Observer and Super-Twisting Sliding Mode Control" Electronics 13, no. 19: 3934. https://doi.org/10.3390/electronics13193934
APA StyleKang, Z., Li, L., & Zhang, H. (2024). Feedforward Control Strategy of a DC-DC Converter for an Off-Grid Hydrogen Production System Based on a Linear Extended State Observer and Super-Twisting Sliding Mode Control. Electronics, 13(19), 3934. https://doi.org/10.3390/electronics13193934