Vulnerable Road User Safety Using Mobile Phones with Vehicle-to-VRU Communication
Abstract
:1. Introduction
- The development of an Android app for collecting mobile phone sensor data of VRUs;
- Using the collected data to predict the future motion of a VRU using Kalman filtering and LSTM-based motion prediction;
- Converting the future motion and localization data of the VRU to a Personal Safety Message (PSM);
- Broadcasting the PSM using Bluetooth advertising or over-the-air using internet connectivity to nearby vehicles;
- Further developing and using the same Android app to receive PSM data in a vehicle;
- Developing and implementing programs in a Bluetooth board to similarly broadcast and receive PSM data if needed;
- Developing and implementing a pedestrian collision warning system using the PSM data;
- Analyzing available vehicle and pedestrian interactions in a smart intersection to calibrate the pedestrian collision warning system;
- Experimentally developing and demonstrating a full pedestrian collision avoidance system.
2. V2P App Development and Implementation
3. V2P Communication Experiments
4. V2P-Communication-Based Pedestrian Safety Warnings
4.1. Safety Approach
4.2. Pedestrian Path-Tracking and Prediction
4.3. Pedestrian Behavior Prediction
4.4. Pedestrian–Vehicle Interaction
4.5. Real World Data Processing
5. Simulation and Experimental Results and Discussion
5.1. Kalman Filter and LSTM Pedestrian Path Prediction Testing
5.2. Vissim Simulation Testing
5.3. Real-World Testing of Driver Warning System for Pedestrian Collision Avoidance
6. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Early Estimate of Motor Vehicle Traffic Fatalities in 2018; NHTSA: Washington, DC, USA, 2019.
- Guvenc, L.; Guvenc, B.A.; Emirler, M.T. Connected and Autonomous Vehicles. In Internet of Things and Data Analytics Handbook; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 581–595. ISBN 978-1-119-17360-1. [Google Scholar]
- Guvenc, L.; Aksun-Guvenc, B.; Zhu, S.; Gelbal, S.Y. Autonomous Road Vehicle Path Planning and Tracking Control; Book Series on Control Systems Theory and Application; Wiley/IEEE Press: New York, NY, USA, 2021; ISBN 978-1-119-74794-9. [Google Scholar]
- Gelbal, S.Y.; Aksun-Guvenc, B.; Guvenc, L. SmartShuttle: A Unified, Scalable and Replicable Approach to Connected and Automated Driving in a Smart City. In Proceedings of the Science of Smart City Operations and Platforms Engineering in Partnership with Global City Teams Challenge (SCOPE-GCTC) Workshop, Pittsburgh, PA, USA, 18–21 April 2017. [Google Scholar]
- Bagheri, M.; Siekkinen, M.; Nurminen, J.K. Cloud-Based Pedestrian Road-Safety with Situation-Adaptive Energy-Efficient Communication. IEEE Intell. Transp. Syst. Mag. 2016, 8, 45–62. [Google Scholar] [CrossRef]
- WHO—Advice for the Public. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public#:~:text=Maintain%20at%20least%20a%201,The%20further%20away%2C%20the%20better (accessed on 1 November 2020).
- Gandhi, T.; Trivedi, M.M. Pedestrian Protection Systems: Issues, Survey, and Challenges. IEEE Trans. Intell. Transp. Syst. 2007, 8, 413–430. [Google Scholar] [CrossRef]
- Swanson, E.; Yanagisawa, M.; Najm, W.G.; Foderaro, F.; Azeredo, P. Crash Avoidance Needs and Countermeasure Profiles for Safety Applications Based on Light-Vehicle-to-Pedestrian Communications; National Highway Traffic Safety Administration (NTHSA): Washington, DC, USA, 2016.
- Hickey, K. NYC Looks to Tech to Improve Pedestrian Safety. 2016. Available online: https://gcn.com/articles/2016/10/19/nyc-ped-sig.aspx (accessed on 10 December 2021).
- Dozza, M.; Werneke, J. Introducing naturalistic cycling data: What factors influence bicyclists’ safety in the real world? Transp. Res. Part F Traffic Psychol. Behav. 2014, 24, 83–91. [Google Scholar] [CrossRef]
- Ma, Q.; Yang, H.; Mayhue, A.; Sun, Y.; Huang, Z.; Ma, Y. E-Scooter safety: The riding risk analysis based on mobile sensing data. Accid. Anal. Prev. 2021, 151, 105954. [Google Scholar] [CrossRef]
- NTHSA. Vehicle-To-Vehicle Communication Technology for Light Vehicles; NHTSA: Washington, DC, USA, 2019.
- Bae, J.-K.; Park, M.-C.; Yang, E.-J.; Seo, D.-W. Implementation and Performance Evaluation for DSRC-Based Vehicular Communication System. IEEE Access 2021, 9, 6878–6887. [Google Scholar] [CrossRef]
- Gyawali, S.; Xu, S.; Qian, Y.; Hu, R.Q. Challenges and Solutions for Cellular Based V2X Communications. IEEE Commun. Surv. Tutor. 2021, 23, 222–255. [Google Scholar]
- Moradi-Pari, E.; Tian, D.; Bahramgiri, M.; Rajab, S.; Bai, S. DSRC Versus LTE-V2X: Empirical Performance Analysis of Direct Vehicular Communication Technologies. IEEE Trans. Intell. Transp. Syst. 2023, 24, 4889–4903. [Google Scholar] [CrossRef]
- Honda. Honda Demonstrates New “Smart Intersection” Technology that Enables Vehicles to Virtually See Through and around Buildings. 2018. Available online: https://hondanews.com/en-US/releases/honda-demonstrates-new-smart-intersection-technology-that-enables-vehicles-to-virtually-see-through-and-around-buildings (accessed on 10 December 2021).
- Moradi-Pari, E.; Tian, D.; Mahjoub, H.N.; Bai, S. The Smart Intersection: A Solution to Early-Stage Vehicle-to-Everything Deployment. IEEE Intell. Transp. Syst. Mag. 2022, 14, 88–102. [Google Scholar] [CrossRef]
- Merdrignac, P.; Shagdar, O.; Nashashibi, F. Fusion of Perception and V2P Communication Systems for the Safety of Vulnerable Road Users. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1740–1751. [Google Scholar] [CrossRef]
- Gentner, C.; Günther, D.; Kindt, P.H. Identifying the BLE Advertising Channel for Reliable Distance Estimation on Smartphones. IEEE Access 2022, 10, 9563–9575. [Google Scholar] [CrossRef]
- Tsai, Y.-R.; Chen, Y.-C. Opportunistic Connectionless Undirected Information Dissemination Based on Bluetooth Low Energy Advertising Technology on Smartphones. IEEE Access 2021, 9, 155851–155860. [Google Scholar] [CrossRef]
- Wu, M.; Ma, B.; Liu, Z.; Xiu, L.; Zhang, L. BLE-horn: A smartphone-based bluetooth low energy vehicle-to-pedestrian safety system. In Proceedings of the 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 11–13 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.J.; Yang, J.; Gruteser, M.; Martin, R.P.; Liu, H.; Liu, L.; Karatas, C. Determining Driver Phone Use by Exploiting Smartphone Integrated Sensors. IEEE Trans. Mob. Comput. 2016, 15, 1965–1981. [Google Scholar] [CrossRef]
- Ramah, S.-E.; Bouhoute, A.; Boubouh, K.; Berrada, I. One Step Further Towards Real-Time Driving Maneuver Recognition Using Phone Sensors. IEEE Trans. Intell. Transp. Syst. 2021, 22, 6599–6611. [Google Scholar] [CrossRef]
- Google. Android Bluetooth Low Energy Documentation. Available online: https://developer.android.com/guide/topics/connectivity/bluetooth/ble-overview (accessed on 10 December 2021).
- Warriach, E.U.; Witte, S. Approach for performance investigation of different Bluetooth modules and communication modes. In Proceedings of the 2008 4th International Conference on Emerging Technologies, Rawalpindi, Pakistan, 18–19 October 2008; pp. 167–171. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Zhuo, K.; Jiao, W.; Yang, W. Research on pedestrian vehicle collision warning based on path prediction. In Proceedings of the 2023 7th International Conference on Transportation Information and Safety (ICTIS), Xi’an, China, 4–6 August 2023; pp. 1267–1272. [Google Scholar] [CrossRef]
- Xiog, G.; Yang, T.; Li, M.; Zhang, Y.; Song, W.; Gong, J. A Novel V2X-based Pedestrian Collision Avoidance System and the Effects Analysis of Communication Delay and Packet Loss on Its application. In Proceedings of the 2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Madrid, Spain, 12–14 September 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Ararat, O.; Guvenc, B.A. Development of a Collision Avoidance Algorithm Using Elastic Band Theory. IFAC Proc. Vol. 2008, 41, 8520–8525. [Google Scholar] [CrossRef]
- Mínguez, R.Q.; Alonso, I.P.; Fernández-Llorca, D.; Sotelo, M.Á. Pedestrian Path, Pose, and Intention Prediction Through Gaussian Process Dynamical Models and Pedestrian Activity Recognition. IEEE Trans. Intell. Transp. Syst. 2019, 20, 1803–1814. [Google Scholar] [CrossRef]
- Min, S.; Lee, J.-Y.; Jung, K.-D. Real-time Path Prediction and Grid-based Path Modeling Method. Int. J. Appl. Eng. Res. 2017, 12, 9997–10001. [Google Scholar]
- Scholler, C.; Aravantinos, V.; Lay, F.; Knoll, A. What the Constant Velocity Model Can Teach Us About Pedestrian Motion Prediction. IEEE Robot. Autom. Lett. 2020, 5, 1696–1703. [Google Scholar] [CrossRef]
- Alahi, A.; Goel, K.; Ramanathan, V.; Robicquet, A.; Fei-Fei, L.; Savarese, S. Social LSTM: Human Trajectory Prediction in Crowded Spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Gupta, A.; Johnson, J.; Fei-Fei, L.; Savarese, S.; Alahi, A. Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Xue, H.; Huynh, D.; Reynolds, M. Location-Velocity Attention for Pedestrian Trajectory Prediction. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 7–11 January 2019. [Google Scholar]
- Sorenson, H.W. Kalman Filtering: Theory and Application; IEEE Press: Piscataway, NJ, USA, 1985. [Google Scholar]
- nrf52840-DK Bluetooth Development Board. Nordic Semiconductor. Available online: https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dk (accessed on 10 December 2021).
- SAE. J2735 Dedicated Short Range Communications (DSRC) Message Set Dictionary; SAE: Warrendale, PA, USA, 2016. [Google Scholar]
- WIZnet W5500 Ethernet Shield. Available online: https://www.wiznet.io/product-item/w5500-ethernet-shield/ (accessed on 10 December 2021).
- Kulshrestha, T.; Niyogi, R.; Patel, D. A fast and scalable crowd sensing based trajectory tracking system. In Proceedings of the 2017 Tenth International Conference on Contemporary Computing (IC3), Noida, India, 10–12 August 2017; pp. 1–6. [Google Scholar] [CrossRef]
- SCOS Database. Available online: https://www.smartcolumbusos.com/ (accessed on 10 December 2021).
- Ozcan, D.; Sonmez, U.; Guvenc, L. Optimisation of the Nonlinear Suspension Characteristics of a Light Commercial Vehicle. Int. J. Veh. Technol. 2013, 2013, 562424. [Google Scholar]
- Guvenc, L.; Aksun-Guvenc, B.; Demirel, B.; Emirler, M. Control of Mechatronic Systems; IET: London, UK, 2017. [Google Scholar]
- Necipoglu, S.; Cebeci, S.A.; Has, Y.E.; Guvenc, L.; Basdogan, Ç. A Robust Repetitive Controller for Fast AFM Imaging. IEEE Trans. Nanotechnol. 2011, 10, 1074–1082. [Google Scholar] [CrossRef]
- Baek, M.; Mun, J.; Kim, W.; Choi, D.; Yim, J.; Lee, S. Driving Environment Perception Based on the Fusion of Vehicular Wireless Communications and Automotive Remote Sensors. Sensors 2021, 21, 1860. [Google Scholar] [CrossRef]
- Shiomi, M.; Zanlungo, F.; Hayashi, K.; Kanda, T. Towards a Socially Acceptable Collision Avoidance for a Mobile Robot Navigating Among Pedestrians Using a Pedestrian Model. Int. J. Soc. Robot. 2014, 6, 443–455. [Google Scholar] [CrossRef]
- Android Auto. Available online: https://www.android.com/auto/ (accessed on 23 December 2023).
- Apple, Car Keys and CarPlay, A Smarter Ride from Start to Finish. Available online: https://www.apple.com/ios/carplay/ (accessed on 23 December 2023).
- Kuutti, S.; Fallah, S.; Katsaros, K.; Dianati, M.; Mccullough, F.; Mouzakitis, A. A Survey of the State-of-the-Art Localization Techniques and Their Potentials for Autonomous Vehicle Applications. IEEE Internet Things J. 2018, 5, 829–846. [Google Scholar] [CrossRef]
Device | Condition | Distance in Normal Advertisement (m) | Distance in Extended Advertisement (m) |
---|---|---|---|
nRF52840-DK | No obstructions | 191 | 253 |
Android | No obstructions | 78 | 114 |
Android | Intentionally obstructed by pedestrian body | 27 | 55 |
Test | ADE (m) |
---|---|
A | 0.2866 |
B | 0.2112 |
C | 0.3109 |
Test | ADE (m) |
---|---|
A | 0.1132 |
B | 0.1556 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gelbal, S.Y.; Aksun-Guvenc, B.; Guvenc, L. Vulnerable Road User Safety Using Mobile Phones with Vehicle-to-VRU Communication. Electronics 2024, 13, 331. https://doi.org/10.3390/electronics13020331
Gelbal SY, Aksun-Guvenc B, Guvenc L. Vulnerable Road User Safety Using Mobile Phones with Vehicle-to-VRU Communication. Electronics. 2024; 13(2):331. https://doi.org/10.3390/electronics13020331
Chicago/Turabian StyleGelbal, Sukru Yaren, Bilin Aksun-Guvenc, and Levent Guvenc. 2024. "Vulnerable Road User Safety Using Mobile Phones with Vehicle-to-VRU Communication" Electronics 13, no. 2: 331. https://doi.org/10.3390/electronics13020331
APA StyleGelbal, S. Y., Aksun-Guvenc, B., & Guvenc, L. (2024). Vulnerable Road User Safety Using Mobile Phones with Vehicle-to-VRU Communication. Electronics, 13(2), 331. https://doi.org/10.3390/electronics13020331