A3GT: An Adaptive Asynchronous Generalized Adversarial Training Method
Abstract
:1. Introduction
2. Background
2.1. Adversarial Training
- Model-centric approaches: Wang et al. [16] propose simultaneously updating model parameters through normal adversarial training and clean sample training to achieve a balance between robust accuracy and clean accuracy. However, experiments have shown that different data distributions require different synchronized parameters for model training, making fixed parameter methods less flexible.
2.2. Multi-Task Learning
3. Methods
3.1. A3GT Overview
3.2. Basic Learners
3.3. Adaptive Global Learner
4. Experimental Evaluation
4.1. Experimental Setup
4.1.1. Experimental Environment Configuration
4.1.2. Dataset Selection
4.1.3. Baseline Adversarial Defense Methods
4.1.4. Adversarial Attack Methods
4.1.5. Evaluation Metrics
- Clean accuracy: classification accuracy of the model on clean samples.
- Robust accuracy: classification accuracy of the model on adversarial samples generated by corresponding attack methods.
- CMMR score [27]: Comprehensive Multi-dimensional Model Robustness (CMMR) score derived from metrics including Acc, ASS, MSE, , and PSNR.
4.2. Performance Comparison under Different Adversarial Attack Methods
4.3. Performance Comparison on Different Datasets
4.4. Robustness Score of A3GT under the CMMR Framework
4.5. Ablation Study
4.5.1. Mixing Ratio of the Two Basic Learners
4.5.2. Learning Frequency c of the Global Learner
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kalischek, N.; Wegner, J.D.; Schindler, K. In the light of feature distributions: Moment matching for neural style transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 9382–9391. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Wang, Z.; Wang, X.; Ma, J.; Qin, Z.; Ren, J.; Ren, K. Survey on Adversarial Example Attack for Computer Vision Systems. Chin. J. Comput. 2023, 46, 436–468. [Google Scholar]
- Zhao, S.; Ma, B. MossFormer: Pushing the Performance Limit of Monaural Speech Separation Using Gated Single-Head Transformer with Convolution-Augmented Joint Self-Attentions. arXiv 2023, arXiv:2302.11824. [Google Scholar]
- Gui, T.; Xi, Z.; Zheng, R.; Liu, Q.; Ma, R.; Wu, T.; Bao, R.; Zhang, Q. Recent Researches of Robustness in Natural Language Processing Based on Deep Neural Network. Chin. J. Comput. 2024, 47, 90–112. [Google Scholar]
- Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901. [Google Scholar]
- Ma, C.; Shen, C.; Lin, C.; Li, Q.; Wang, Q.; Li, Q.; Guan, X. Attacks and Defenses for Autonomous Driving Intelligence Models. Chin. J. Comput. 2024, 1, 1–22. [Google Scholar]
- Hu, Y.; Yang, J.; Chen, L.; Li, K.; Sima, C.; Zhu, X.; Chai, S.; Du, S.; Lin, T.; Wang, W.; et al. Planning-oriented autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 17853–17862. [Google Scholar]
- Sha, H.; Mu, Y.; Jiang, Y.; Chen, L.; Xu, C.; Luo, P.; Li, S.E.; Tomizuka, M.; Zhan, W.; Ding, M. LanguageMPC: Large Language Models as Decision Makers for Autonomous Driving. arXiv 2023, arXiv:cs.RO/2310.03026. [Google Scholar]
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks. arXiv 2013, arXiv:1312.6199. [Google Scholar]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572. [Google Scholar]
- Carlini, N.; Wagner, D. Towards evaluating the robustness of neural networks. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 39–57. [Google Scholar]
- Wang, Z.; Guo, H.; Zhang, Z.; Liu, W.; Qin, Z.; Ren, K. Feature importance-aware transferable adversarial attacks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 7639–7648. [Google Scholar]
- Zhong, Y.; Liu, X.; Zhai, D.; Jiang, J.; Ji, X. Shadows can be dangerous: Stealthy and effective physical-world adversarial attack by natural phenomenon. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 15345–15354. [Google Scholar]
- Athalye, A.; Carlini, N.; Wagner, D. Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; PMLR: London, UK, 2018; pp. 274–283. [Google Scholar]
- Wang, H.; Wang, Y. Generalist: Decoupling natural and robust generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 20554–20563. [Google Scholar]
- Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards deep learning models resistant to adversarial attacks. arXiv 2017, arXiv:1706.06083. [Google Scholar]
- Zhang, H.; Yu, Y.; Jiao, J.; Xing, E.; El Ghaoui, L.; Jordan, M. Theoretically principled trade-off between robustness and accuracy. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; PMLR: London, UK, 2019; pp. 7472–7482. [Google Scholar]
- Carmon, Y.; Raghunathan, A.; Schmidt, L.; Duchi, J.C.; Liang, P.S. Unlabeled data improves adversarial robustness. Adv. Neural Inf. Process. Syst. 2019, 32, 11190–11201. [Google Scholar]
- Najafi, A.; Maeda, S.I.; Koyama, M.; Miyato, T. Robustness to adversarial perturbations in learning from incomplete data. Adv. Neural Inf. Process. Syst. 2019, 32, 5542–5552. [Google Scholar]
- Lee, S.; Lee, H.; Yoon, S. Adversarial vertex mixup: Toward better adversarially robust generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 272–281. [Google Scholar]
- Zhang, J.; Xu, X.; Han, B.; Niu, G.; Cui, L.; Sugiyama, M.; Kankanhalli, M. Attacks which do not kill training make adversarial learning stronger. In Proceedings of the International Conference on Machine Learning, Online, 13–18 July 2020; PMLR: London, UK, 2020; pp. 11278–11287. [Google Scholar]
- McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A.y. Communication-efficient learning of deep networks from decentralized data. In Proceedings of the Artificial Intelligence and Statistics, Lauderdale, FL, USA, 20–22 April 2017; PMLR: London, UK, 2017; pp. 1273–1282. [Google Scholar]
- Lamb, A.; Verma, V.; Kannala, J.; Bengio, Y. Interpolated adversarial training: Achieving robust neural networks without sacrificing too much accuracy. In Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, London, UK, 15 November 2019; pp. 95–103. [Google Scholar]
- Liu, Y.; Cheng, Y.; Gao, L.; Liu, X.; Zhang, Q.; Song, J. Practical evaluation of adversarial robustness via adaptive auto attack. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 15105–15114. [Google Scholar]
- Dong, Y.; Liao, F.; Pang, T.; Su, H.; Zhu, J.; Hu, X.; Li, J. Boosting adversarial attacks with momentum. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9185–9193. [Google Scholar]
- Liu, W.; Zhang, S.; Wang, W.; Zhang, J.; Liu, X. CMMR: A Composite Multidimensional Models Robustness Evaluation Framework for Deep Learning. In Algorithms and Architectures for Parallel Processing, Proceedings of the 23rd International Conference, ICA3PP 2023, Tianjin, China, 20–22 October 2023, Proceedings, Part V; Springer: Berlin/Heidelberg, Germany, 2023; pp. 238–256. [Google Scholar]
Environment | Configuration |
---|---|
Operating system | Ubuntu Server 22.04 (Canonical Ltd., London, UK) |
CPU | Intel(R) Xeon(R) Gold 5118 CPU @ 2.30 GHz (Intel Corporation, Santa Clara, CA, USA) |
GPU | NVIDIA GeForce RTX 3090 24 GB (NVIDIA Corporation, Santa Clara, CA, USA) |
Memory | 314 GB |
Development language | Python 3.9 (Python Software Foundation, Wilmington, DE, USA) |
Deep learning framework | Pytorch 2.0.1 (Meta Platforms, Inc., Menlo Park, CA, USA) |
Model | Clean Accuracy | PGD20 | PGD100 | MIM | Square | ||||
---|---|---|---|---|---|---|---|---|---|
Clean | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Generalist | 89.09 | 50.01 | 50.00 | 52.19 | 46.53 | 48.70 | 46.11 | 56.68 | |
FAT | 87.72 | 46.69 | 46.81 | 47.03 | 46.20 | 47.51 | 44.88 | 45.76 | 52.98 |
IAT | 84.60 | 40.83 | 40.87 | 43.07 | 37.56 | 37.95 | 35.13 | 36.06 | 49.30 |
A3GT | 47.20 |
MNIST | SVHN | |||||
---|---|---|---|---|---|---|
Clean Samples | PGD | MIA | Clean Samples | PGD | MIA | |
FAT | 98.97 | 92.26 | 93.54 | 93.41 | 53.26 | 54.54 |
TRADES | 99.13 | 94.61 | 95.13 | 93.13 | 54.61 | 55.13 |
YOPO | 99.19 | 93.13 | 93.54 | 92.19 | 52.13 | 55.54 |
A3GT | 99.2 | 96.13 | 96.3 | 94.31 | 54.13 | 56.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Liu, W.; Huang, Z.; Chen, Y.; Zhang, S. A3GT: An Adaptive Asynchronous Generalized Adversarial Training Method. Electronics 2024, 13, 4052. https://doi.org/10.3390/electronics13204052
He Z, Liu W, Huang Z, Chen Y, Zhang S. A3GT: An Adaptive Asynchronous Generalized Adversarial Training Method. Electronics. 2024; 13(20):4052. https://doi.org/10.3390/electronics13204052
Chicago/Turabian StyleHe, Zeyi, Wanyi Liu, Zheng Huang, Yitian Chen, and Shigeng Zhang. 2024. "A3GT: An Adaptive Asynchronous Generalized Adversarial Training Method" Electronics 13, no. 20: 4052. https://doi.org/10.3390/electronics13204052
APA StyleHe, Z., Liu, W., Huang, Z., Chen, Y., & Zhang, S. (2024). A3GT: An Adaptive Asynchronous Generalized Adversarial Training Method. Electronics, 13(20), 4052. https://doi.org/10.3390/electronics13204052