Extremum Seeking-Based Radio Signal Strength Optimization Algorithm for Hoverable UAV Path Planning
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.2.1. Path Optimization
1.2.2. Distance Extension Optimization
1.2.3. Coverage Optimization
1.3. Contribution
1.4. Article Organization
2. Mission
2.1. Scenario
2.2. Typical RSSI and MAVLink Log Graphs
2.3. Overview of the ES-RSSO Algorithm
3. Problem Formulation
3.1. Problem Setup
3.2. ES-RSSO Algorithm
3.3. UAV Dynamics
4. Simulation Result
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Acronyms
BLOS | Beyond-line-of-sight |
CPP | Coverage path planning |
DRL | Deep reinforcement learning |
ES | Extremum seeking |
FANET | Flying ad hoc network |
FBS | Flying base station |
FC | Flight controller |
IRL | Inverse reinforcement learning |
G2A | Ground-to-air |
GCS | Ground control station |
GPS | Global positioning system |
IMU | Inertial measurement unit |
MAVLink | Micro air vehicle link |
MILP | Mixed integer linear programming |
PID | Proportional–integral–differential |
PSO | Particle swarm optimization |
PSO/D | Particle swarm optimization algorithm based on decomposition |
QiER | Quantum-inspired experience replay |
QoS | Quality of service |
RRT | Rapidly exploring random trees |
RSSI | Received signal strength indication |
RSSO | Radio signal strength optimization |
SCA | Successive convex approximation |
SINR | Signal-to-interference plus noise ratio |
SNR | Signal-to-noise ratio |
SPP | Shortest path problem |
UAV | Unmanned aerial vehicle |
UDG | Unit disk graph |
Nomenclature
Demodulation signal | |||
Modulation signal | |||
Sign value | No unit | +1, −1 | |
Thrust coefficient | No unit | ||
Input compensator | No unit | ||
Output compensator | No unit | ||
Drag coefficient | No unit | ||
Gravitational acceleration | 9.81 | ||
Body inertia | 0.0173, 0.0173, 0.0223 | ||
Rotor inertia | |||
Arm length | |||
UAV mass | 2.7 | ||
White noise | |||
Rotor speed | |||
Forcing frequency of the demodulation signal | |||
Forcing frequency of the modulation signal | |||
Phase of the demodulation signal | |||
Phase of the modulation signal | |||
Roll, pitch, and yaw angles | |||
RSSI link capacity | |||
Mission completion time | |||
Modulated signal (i.e., UAV position) | |||
Estimated UAV position | |||
Optimum value of | |||
Input vector | |||
UAV waypoint list | |||
UAV position | |||
Demodulated signal |
References
- Wild, G.; Murray, J.; Baxter, G. Exploring Civil Drone Accidents and Incidents to Help Prevent Potential Air Disasters. Aerospace 2016, 3, 22. [Google Scholar] [CrossRef]
- Ariyur, K.B.; Krstic, M. Real-Time Optimization by Extremum-Seeking Control; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Ariyur, K.B.; Bommalingaiahnapallya, C.; Kazi, S.S. Improving Wireless Data Link Capacity. U.S. Patent WO2006088850A1, 24 August 2006. [Google Scholar]
- Ariyur, K.B.; Krstic, M. Analysis and Design of Multivariable Extremum Seeking. In Proceedings of the American Control Conference, Anchorage, AK, USA, 8–10 May 2002. [Google Scholar]
- Sauter, M. From GSM to LTE: An Introduction to Mobile Networks and Mobile Broadband; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- IEEE 802.11-2007; IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks—Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Standards Association: Piscataway, NJ, USA, 2007. Available online: https://standards.ieee.org/ieee/802.11/3605/ (accessed on 18 September 2024).
- Royland, D. Dead Reckoning System for UAV Using RSSI and Extremum Seeking Control. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2016. [Google Scholar]
- Fang, Z.; Zhao, Z.; Geng, D.; Xuan, Y.; Du, L.; Cui, X. RSSI Variability Characterization and Calibration Method in Wireless Sensor Network. In Proceedings of the IEEE International Conference on Information and Automation, Harbin, China, 20–23 June 2010. [Google Scholar]
- Dong, Q.; Dargie, W. Evaluation of the Reliability of RSSI for Indoor Localization. In Proceedings of the International Conference on Wireless Communications in Underground and Confined Areas, Clermont Ferrand, France, 28–30 August 2012. [Google Scholar]
- PX4 Guide (Main), Hex Cube Black Flight Controller. Available online: https://docs.px4.io/main/en/flight_controller/pixhawk-2.html (accessed on 18 September 2024).
- ArduPilot, Mission Planner Home. Available online: https://ardupilot.org/planner/# (accessed on 18 September 2024).
- MAVLINK, MAVLink Developer Guide. Available online: https://mavlink.io/en/ (accessed on 18 September 2024).
- ArduPilot, SiK Telemetry Radio. Available online: https://ardupilot.org/copter/docs/common-sik-telemetry-radio.html (accessed on 18 September 2024).
- ArduPilot, SiK Radio—Advanced Configuration. Available online: https://ardupilot.org/copter/docs/common-3dr-radio-advanced-configuration-and-technical-information.html (accessed on 18 September 2024).
- Jung, S.; Ariyur, K.B. Automated Wireless Recharging for Small UAVs. Int. J. Aeronaut. Space Sci. 2017, 18, 588–600. [Google Scholar] [CrossRef]
- Jung, S.; Lee, T.; Mina, T.; Ariyur, K.B. Inductive or Magnetic Recharging for Small UAVs. In Proceedings of the SAE Aerospace Electronics and Avionics Systems Conference, Phoenix, AZ, USA, 30 October–1 November 2012. [Google Scholar]
- Jung, S.; Kim, H. Autolanding Mission Planning of the IT Convergence Hoverable UAV. J. Korea Converg. Soc. 2017, 8, 9–16. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, R. Radio Map-Based 3D Path Planning for Cellular-Connected UAV. IEEE Trans. Wirel. Commun. 2021, 20, 1975–1989. [Google Scholar] [CrossRef]
- Dong, Y.; He, C.; Wang, Z.; Zhang, L. Radio Map Assisted Path Planning for UAV Anti-Jamming Communications. IEEE Signal Process. Lett. 2022, 29, 607–611. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, X.; Guan, X.; Song, E.; Zeng, X.; Shi, Q. Robust Trajectory Planning for UAV Communication Systems in the Presence of Jammers. Chin. J. Aeronaut. 2022, 35, 265–274. [Google Scholar] [CrossRef]
- Khamidehi, B.; Sousa, E.S. Federated Learning for Cellular-Connected UAVs: Radio Mapping and Path Planning. In Proceedings of the IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020. [Google Scholar]
- El-Gayar, M.M.; Ajour, M.N. Resource Allocation in UAV-Enabled NOMA Networks for Enhanced Six-G Communications Systems. Electronics 2023, 12, 5033. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, Y.; Zhang, R. Cellular-Enabled UAV Communication: Trajectory Optimization under Connectivity Constraint. In Proceedings of the IEEE International Conference on Communications, Kansas City, MO, USA, 20–24 May 2018. [Google Scholar]
- Li, Y.; Aghvami, A.H.; Dong, D. Path Planning for Cellular-Connected UAV: A DRL Solution with Quantum-Inspired Experience Replay. IEEE Trans. Wirel. Commun. 2022, 21, 7897–7912. [Google Scholar] [CrossRef]
- Shamsoshoara, A.; Lotfi, F.; Mousavi, S.; Afghah, F.; Guvenc, I. Joint Path Planning and Power Allocation of a Cellular-Connected UAV using Apprenticeship Learning via Deep Inverse Reinforcement Learning. Comput. Netw. 2024, 254, 110789. [Google Scholar] [CrossRef]
- Li, B.; Jiang, Y.; Sun, J.; Cai, L.; Wen, C. Development and Testing of a Two-UAV Communication Relay System. Sensors 2016, 16, 1696. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zeng, Y.; Zhang, R. Joint Trajectory and Communication Design for Multi-UAV Enabled Wireless Networks. IEEE Trans. Wirel. Commun. 2018, 17, 2109–2121. [Google Scholar] [CrossRef]
- Tran, D.; Nguyen, V.; Chatzinotas, S.; Vu, T.X.; Ottersten, B. UAV Relay-Assisted Emergency Communications in IoT Networks: Resource Allocation and Trajectory Optimization. IEEE Trans. Wirel. Commun. 2022, 21, 1621–1637. [Google Scholar] [CrossRef]
- Daniel, K.; Rohde, S.; Wietfeld, C. Leveraging Public Wireless Communication Infrastructures for UAV-Based Sensor Networks. In Proceedings of the IEEE International Conference on Technologies for Homeland Security, Waltham, MA, USA, 8–10 November 2010. [Google Scholar]
- Pan, Y.; Da, X.; Hu, H.; Huang, Y.; Zhang, M.; Cumanan, K.; Dobre, O.A. Joint Optimization of Trajectory and Resource Allocation for Time-Constrained UAV-Enabled Cognitive Radio Networks. IEEE Trans. Veh. Technol. 2022, 71, 5576–5580. [Google Scholar] [CrossRef]
- Shi, L.; Xu, S. UAV Path Planning with QoS Constraint in Device-to-Device 5G Networks using Particle Swarm Optimization. IEEE Access 2020, 8, 137884–137896. [Google Scholar] [CrossRef]
- Hu, S.; Yuan, X.; Ni, W.; Wang, X. Trajectory Planning of Cellular-Connected UAV for Communication-Assisted Radar Sensing. IEEE Trans. Commun. 2022, 70, 6385–6396. [Google Scholar] [CrossRef]
- Lee, J.; Friderikos, V. Interference-Aware Path Planning Optimization for Multiple UAVs in Beyond 5G Networks. J. Commun. Netw. 2022, 24, 125–138. [Google Scholar] [CrossRef]
- Khan, I.U.; Alturki, R.; Alyamani, H.J.; Ikram, M.A.; Aziz, M.A.; Hoang, V.T.; Cheema, T.A. RSSI-Controlled Long-Range Communication in Secured IoT-Enabled Unmanned Aerial Vehicles. Mob. Inf. Syst. 2021, 2021, 5523553. [Google Scholar] [CrossRef]
- Scheinker, A. 100 Years of Extremum Seeking: A Survey. Automatica 2024, 161, 111481. [Google Scholar] [CrossRef]
- Long, Y.; He, H. Robot Path Planning Based on Deep Reinforcement Learning. In Proceedings of the IEEE Conference on Telecommunications, Optics and Computer Science, Shenyang, China, 11–13 December 2020. [Google Scholar]
- Zahana, M.A. MatMav Guide. Available online: https://mzahana.gitbooks.io/matmav-guide/content/ (accessed on 18 September 2024).
- MathWorks, Extremum Seeking Control. Available online: https://mathworks.com/help/slcontrol/ug/extremum-seeking-control.html (accessed on 18 September 2024).
- Jung, S.; Ariyur, K.B. Strategic Cattle Roundup using Multiple Quadrotor UAVs. Int. J. Aeronaut. Space Sci. 2017, 18, 315–326. [Google Scholar] [CrossRef]
- Droncode, PX4 Pro. Available online: https://dronecode.diyrobocars.com/ (accessed on 18 September 2024).
- Droncode, QGroundControl. Available online: https://qgroundcontrol.com/ (accessed on 18 September 2024).
- ArduPilot, CubePilot Here+ RTK GPS. Available online: https://ardupilot.org/copter/docs/common-here-plus-gps.html (accessed on 18 September 2024).
- Jung, S. Development of Path Planning Tool for Unmanned System Considering Energy Consumption. Appl. Sci. 2019, 9, 3341. [Google Scholar] [CrossRef]
Path Optimization | Distance Extension Optimization | Coverage Optimization | ||
---|---|---|---|---|
Literature | Propose Method | [18,19,20,21,22,23,24,25] | [26,27,28] | [29,30,31,32,33,34] |
Basic Ideology | Radio map-based path planning | Xest path planning (shortest, fastest, etc.) | Communication beyond the limits of telemetry range | Coverage path planning (CPP) |
Mission Goal |
|
| Multi-UAV-based communication relay | Resource allocation |
Optimization Technique | ES-RSSO |
| Heuristic convex optimization |
|
Pros |
| Better Xest path optimization achieved through the Q-learning algorithm based on the Markov decision process and DRL [36] | A relatively simple yet efficient iterative algorithm |
|
Cons | Semi-global convergence |
|
Mean | Variance | Integration | |
---|---|---|---|
w/ES-RSSO () | 182.1763 | 12.3866 | 850.1319 |
w/o ES-RSSO () | 186.5946 | 32.6610 | 882.9339 |
Improvement () | 2.37 | 62.08 | 3.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.; Kim, Y.-J. Extremum Seeking-Based Radio Signal Strength Optimization Algorithm for Hoverable UAV Path Planning. Electronics 2024, 13, 4064. https://doi.org/10.3390/electronics13204064
Jung S, Kim Y-J. Extremum Seeking-Based Radio Signal Strength Optimization Algorithm for Hoverable UAV Path Planning. Electronics. 2024; 13(20):4064. https://doi.org/10.3390/electronics13204064
Chicago/Turabian StyleJung, Sunghun, and Young-Joon Kim. 2024. "Extremum Seeking-Based Radio Signal Strength Optimization Algorithm for Hoverable UAV Path Planning" Electronics 13, no. 20: 4064. https://doi.org/10.3390/electronics13204064
APA StyleJung, S., & Kim, Y. -J. (2024). Extremum Seeking-Based Radio Signal Strength Optimization Algorithm for Hoverable UAV Path Planning. Electronics, 13(20), 4064. https://doi.org/10.3390/electronics13204064