Adaptive Transmission of Cognitive Radio- and Segmented zeRIS-Aided Symbiotic Radio
Abstract
:1. Introduction
- An AT strategy is introduced in a zeRIS to improve CR-enabled zeRIS symbiotic radio performance. Specifically, the zeRIS executes accurate phase adjustments when harvested energy is abundant and merely reflects incoming signals directly when energy is insufficient. Moreover, the zeRIS is categorized into two segments, one for PT and the other for BT.
- Coexistence outage probability (COP) and ergodic capacity (EC) are derived to evaluate the reliability and effectiveness of our proposed model, respectively. Furthermore, asymptotic COP and EC at low or high maximum transmission power are calculated to offer profound insights into system performance.
- To corroborate the validity of our analytical derivations, extensive simulations compare them with non-adaptive transmission (NAT). The simulation results highlight the superiority of our scheme over NAT concerning COP, EC, and EE, particularly in scenarios featuring low transmission power levels. Additionally, our findings indicate that the proposed CR-aided AT excels over AT without CR support in terms of EE.
2. System Model
2.1. Model Description
2.2. SNR and Capacity Representation
3. Coexistence Outage Probability
3.1. Derivation of COP
3.2. Asymptotic COP Analysis
4. Ergodic Capacity
4.1. EC Derivation
4.2. Asymptotic EC Analysis
5. Numerical and Simulation Results
5.1. Numerical and Simulation Results of COP
- (i)
- (ii)
- Initially, with a small value dBm for , . Consequently, the transmission power equals . As gradually increased, remained true, accompanied by an increasing SNR and thus a decreasing COP.
- (iii)
- However, as exceeded a certain value (e.g., dBm in the case of dBm in our simulation), the power became and remained unchanged even though increased. In that situation, the constant power guaranteed a stable SNR , indicating that the COP had reached its minimum. This observed behavior suggested that additional power failed to enhance reliability further, as elaborated in Remark 3.
5.2. Numerical and Simulation Results of EC and EE
- (i)
- (ii)
- As previously analyzed in Figure 3, the transmission power initially increased and then plateaued as rose from −5 dBm to 30 dBm. Consequently, the SNR initially exhibited an upward trend before it stabilized. This sustained SNR resulted in a continuous EC growth until it reached a plateau at a sufficiently high level of (e.g., dBm in the case of dBm), which aligned with the explanation provided in Remark 3.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- ITU. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2160-0-202311-I!!PDF-E.pdf (accessed on 28 October 2024).
- Park, J.; Jang, C.; Lee, J.H. Outage Analysis of Underlay Cognitive Radio Networks with Multihop Primary Transmission. IEEE Commun. Lett. 2016, 4, 800–803. [Google Scholar] [CrossRef]
- Liang, Y.-C.; Zhang, Q.; Larsson, E.G.; Li, G.Y. Symbiotic Radio: Cognitive Backscattering Communications for Future Wireless Networks. IEEE Trans. Cogn. Commun. Netw. 2020, 12, 1242–1255. [Google Scholar] [CrossRef]
- Liang, Y.-C.; Zhang, Q.; Wang, J.; Long, R.; Zhou, H.; Yang, G. Backscatter Communication Assisted by Reconfigurable Intelligent Surfaces. Proc. IEEE 2022, 9, 1339–1357. [Google Scholar] [CrossRef]
- Kishore, R.; Gurugopinath, S.; Sofotasios, P.C.; Muhaidat, S.; Al-Dhahir, N. Opportunistic Ambient Backscatter Communication in RF-Powered Cognitive Radio Networks. IEEE Trans. Cogn. Commun. Netw. 2019, 6, 413–426. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Han, C.; Hao, W.; Zeng, M.; Zhu, Z.; Wang, H. Reliability and Security of CR-STAR-RIS-NOMA-Assisted IoT Networks. IEEE Internet Things J. 2024, 9, 27969–27980. [Google Scholar] [CrossRef]
- Abdelaziz, S.A.; Ismail, M.H.; Ibrahim, A.S. Securing Full-Duplex Cognitive Radio with Reconfigurable Intelligent Surfaces via Coordinated Beamforming and Power Control. IEEE Open J. Commun. Soc. 2024, 7, 4764–4777. [Google Scholar] [CrossRef]
- Yang, H.; Ding, H.; Cao, K.; Elkashlan, M.; Li, H.; Xin, K. A RIS-Segmented Symbiotic Ambient Backscatter Communication System. IEEE Trans. Veh. Technol. 2024, 1, 812–825. [Google Scholar] [CrossRef]
- Wen, Z.; Ding, H.; Elkashlan, M.; Yuen, C.; Moualeu, J.M.; Liu, J.; Xin, K.; Yang, C. Outage Analysis for a STAR-RIS-Segmented Symbiotic Backscatter NOMA System. IEEE Trans. Commun. 2024, 5, 1–15. [Google Scholar] [CrossRef]
- Liu, M.; Peng, H.; Zhang, P.; Zeng, M.; Zhu, Z.; Boulogeorgos, A.-A.A.; Dev, K.; Li, X. RIS-Segmented Symbiotic Covert Cooperative Backscatter Communication Systems. IEEE Trans. Veh. Technol. 2024, 9, 1–5. [Google Scholar] [CrossRef]
- Liu, J.; Ding, H.; Elkashlan, M.; Chen, W.; Wang, S.; Sun, T. A STAR-RIS-Segmented Symbiotic AmBC System. IEEE Wireless Commun. Lett. 2024, 2, 1379–1383. [Google Scholar] [CrossRef]
- Baluwale, V.; Chandankumar, H.M.; Charan, K.T.; Manjunath, K.; Suhas, S.M.; Kishore, R.; Gurugopinath, S. Intelligent Reflecting Surfaces-Assisted Ambient Backscattering Communication for Cognitive Radios. In Proceedings of the 2023 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Jaipur, India, 17–20 December 2023; pp. 1–6. [Google Scholar]
- Asiedu, D.K.P.; Yun, J.-H. Multiuser NOMA with Multiple Reconfigurable Intelligent Surfaces for Backscatter Communication in a Symbiotic Cognitive Radio Network. IEEE Trans. Veh. Technol. 2023, 4, 5300–5316. [Google Scholar] [CrossRef]
- Han, S.; Sun, Z.; Xu, S.; Xie, D.; Li, C. Multi-ARIS Backscatter Enabled Downlink NOMA Communication for Cognitive Radio Systems. IEEE Trans. Cogn. Commun. Netw. 2024, 6, 1–15. [Google Scholar] [CrossRef]
- Tyrovolas, D.; Tegos, S.A.; Papanikolaou, V.K.; Xiao, Y.; Mekikis, P.-V.; Diamantoulakis, P.D.; Ioannidis, S.; Liaskos, C.K.; Karagiannidis, G.K. Zero-Energy Reconfigurable Intelligent Surfaces (zeRIS). IEEE Trans. Wireless Commun. 2024, 7, 7013–7026. [Google Scholar] [CrossRef]
- Cao, Q.; Zhang, H.; Shi, Z.; Wang, H.; Fu, Y.; Yang, G.; Ma, S. Outage Performance Analysis of HARQ-Aided Multi-RIS Systems. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021. [Google Scholar]
- Shi, Z.; Wang, H.; Fu, Y.; Ye, X.; Yang, G.; Ma, S. Outage Performance and AoI Minimization of HARQ-IR-RIS Aided IoT Networks. IEEE Trans. Commun. 2023, 3, 1740–1754. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, L.; Chen, X.; Liu, C.; Yang, F.; Schober, R.; Poor, H.V. Active RIS vs. Passive RIS: Which Will Prevail in 6G? IEEE Trans. Commun. 2023, 3, 1707–1725. [Google Scholar] [CrossRef]
- Pei, X.; Wang, X.; Chen, Y.; Pei, T.; Wen, M. AmBC-NOMA-Aided Short-Packet Communication for High Mobility V2X Transmissions. IEEE Wireless Commun. Lett. 2024, 9, 2402–2406. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, J.; Zhang, P.; Tellambura, C. Outage Probability of Decode-and-Forward Cognitive Relay in Presence of Primary User’s Interference. IEEE Commun. Lett. 2012, 8, 1252–1255. [Google Scholar] [CrossRef]
- Lyu, B.; Ramezani, P.; Hoang, D.T.; Gong, S.; Yang, Z.; Jamalipour, A. Optimized Energy and Information Relaying in Self-Sustainable IRS-Empowered WPCN. IEEE Trans. Commun. 2021, 1, 619–633. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, G.; Atapattu, S.; Tsiftsis, T.A.; Tellambura, C. Is Backscatter Link Stronger than Direct Link in Reconfigurable Intelligent Surface-Assisted System? IEEE Commun. Lett. 2020, 6, 1342–1346. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series and Products, 7th ed.; Academic Press: Burlington, VT, USA, 2007; pp. 1–1220. [Google Scholar]
- TotaKhel, A.M.; Hamdi, K.A. Effects of Hardware Impairments on IRS-Enabled MISO Wireless Communication Systems. IEEE Commun. Lett. 2022, 2, 259–263. [Google Scholar] [CrossRef]
- Zhao, W.; Zhu, J.; She, X.; Wang, G.; Tellambura, C. Ergodic Capacity Analysis for Cooperative Ambient Communication System Under Sensitivity Constraint. IEEE Commun. Lett. 2023, 10, 2822–2826. [Google Scholar] [CrossRef]
- Isheden, C.; Chong, Z.; Jorswieck, E.; Fettweis, G. Framework for Link-Level Energy Efficiency Optimization with Informed Transmitter. IEEE Trans. Wireless Commun. 2012, 8, 2946–2957. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Li, N.; Gu, Y.; Guo, J.; Zhu, J.; Wang, G.; Tellambura, C. Adaptive Transmission of Cognitive Radio- and Segmented zeRIS-Aided Symbiotic Radio. Electronics 2024, 13, 4301. https://doi.org/10.3390/electronics13214301
Zhao W, Li N, Gu Y, Guo J, Zhu J, Wang G, Tellambura C. Adaptive Transmission of Cognitive Radio- and Segmented zeRIS-Aided Symbiotic Radio. Electronics. 2024; 13(21):4301. https://doi.org/10.3390/electronics13214301
Chicago/Turabian StyleZhao, Wenjing, Nanxi Li, Yi Gu, Jing Guo, Jianchi Zhu, Gongpu Wang, and Chintha Tellambura. 2024. "Adaptive Transmission of Cognitive Radio- and Segmented zeRIS-Aided Symbiotic Radio" Electronics 13, no. 21: 4301. https://doi.org/10.3390/electronics13214301
APA StyleZhao, W., Li, N., Gu, Y., Guo, J., Zhu, J., Wang, G., & Tellambura, C. (2024). Adaptive Transmission of Cognitive Radio- and Segmented zeRIS-Aided Symbiotic Radio. Electronics, 13(21), 4301. https://doi.org/10.3390/electronics13214301