Active Impulsive Noise Control with Missing Input Data Based on FxImdMCC Algorithm
Abstract
:1. Introduction
- By using an imputation model, we reset the data at the missing data moments to a constant multiple of the data available at the previous moment. In other words, if the input data are 0 at a time moment n, it is replaced by a constant multiple of the previous moment’s non-zero input data;
- We use the imputation model to construct an unbiased estimation of the true stochastic gradient that combines the FxLMS algorithm and MCC, thus deriving a new algorithm that still performs outstandingly in the presence of outliers and random missing values in the input noise, which is validated by simulation experiments.
2. Problem Statement
2.1. FxLMS Algorithm
2.2. FxMCC Algorithm
3. Proposed FxImdMCC Algorithm
3.1. Imputation Model
3.2. Derivation of the FxImdMCC Algorithm
Algorithm 1 Summary of the proposed FxImdMCC algorithm. |
Initialization and parameter selection length of the primary path P(z), length of the secondary path S(z) FxImdMCC algorithm: L, μ, p, γ, |
available do end while |
4. Simulation Results
4.1. Parameters of the Simulation Systems
4.2. Simulation Results of the Proposed FxImdMCC Algorithm
4.3. Comparison with Other Algorithms
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elliott, S.J.; Nelson, P.A. Active Noise Control. IEEE Signal Process. Mag. 1993, 10, 12–35. [Google Scholar] [CrossRef]
- Lu, L.; Yin, K.-L.; de Lamare, R.C.; Zheng, Z.; Yu, Y.; Yang, X.; Chen, B. A Survey on Active Noise Control in the Past Decade—Part I: Linear Systems. Signal Process. 2021, 183, 108039. [Google Scholar] [CrossRef]
- Yang, B.; Yin, J.; Ye, Z.; Yang, S.; Wang, L. Development and Testing of an Active Noise Control System for Urban Road Traffic Noise. Appl. Sci. 2023, 14, 175. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.; Shi, Y.; Jiang, Q.; Zhou, C.; Zheng, Z. Deep Reinforcement Learning-Based Optimal PMU Placement Considering the Degree of Power System Observability. IEEE Trans. Ind. Inform. 2024, 20, 8949–8960. [Google Scholar] [CrossRef]
- Guo, Y.; Shi, D.; Shen, X.; Ji, J.; Gan, W.-S. A Survey on Adaptive Active Noise Control Algorithms Overcoming the Output Saturation Effect. Signal Process. 2024, 222, 109525. [Google Scholar] [CrossRef]
- Ardekani, I.T.; Abdulla, W.H. Theoretical Convergence Analysis of FxLMS Algorithm. Signal Process. 2010, 90, 3046–3055. [Google Scholar] [CrossRef]
- Zheng, R.; Xu, X.; Ye, Z.; Dai, J. Robust sparse Bayesian learning for DOA estimation in impulsive noise environments. Signal Process. 2020, 171, 107500. [Google Scholar] [CrossRef]
- Lu, L.; Yin, K.-L.; de Lamare, R.C.; Zheng, Z.; Yu, Y.; Yang, X.; Chen, B. A Survey on Active Noise Control in the Past Decade–Part II: Nonlinear Systems. Signal Process. 2021, 181, 107929. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, Z. Review of Advances in Active Impulsive Noise Control with Focus on Adaptive Algorithms. Appl. Sci. 2024, 14, 1218. [Google Scholar] [CrossRef]
- Wu, L.; He, H.; Qiu, X. An Active Impulsive Noise Control Algorithm with Logarithmic Transformation. IEEE Trans. Audio Speech Lang. Process. 2010, 19, 1041–1044. [Google Scholar] [CrossRef]
- Kuo, S.M.; Morgan, D.R. Active Noise Control Systems; Wiley: New York, NY, USA, 1996; Volume 4. [Google Scholar]
- Akhtar, M.T. Developing a New Filtered-X Recursive Least Squares Adaptive Algorithm Based on a Robust Objective Function for Impulsive Active Noise Control Systems. Appl. Sci. 2023, 13, 2715. [Google Scholar] [CrossRef]
- Zheng, Z.; Lu, L.; Yu, Y.; de Lamare, R.C.; Liu, Z. FxlogRLP: The Filtered-X Logarithmic Recursive Least P-Power Algorithm. In Proceedings of the 2021 IEEE Statistical Signal Processing Workshop (SSP), Rio de Janeiro, Brazil, 11–14 July 2021; pp. 16–20. [Google Scholar]
- Shi, L.; Lin, Y. Convex Combination of Adaptive Filters under the Maximum Correntropy Criterion in Impulsive Interference. IEEE Signal Process. Lett. 2014, 21, 1385–1388. [Google Scholar] [CrossRef]
- Lu, L.; Zhao, H. Active Impulsive Noise Control Using Maximum Correntropy with Adaptive Kernel Size. Mech. Syst. Signal Process. 2017, 87, 180–191. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, H.; Zeng, X.; Chen, B. Robust generalized maximum correntropy criterion algorithms for active noise control. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 1282–1292. [Google Scholar] [CrossRef]
- Lu, L.; Zhu, G.; Yang, X.; Zhou, K. Conjugate gradient-based FLANN algorithms in nonlinear active noise control. J. Frankl. Inst. 2022, 359, 4468–4488. [Google Scholar] [CrossRef]
- Yu, Y.; Lu, L.; Zakharov, Y.; de Lamare, R.C.; Chen, B. Robust sparsity-aware RLS algorithms with jointly-optimized parameters against impulsive noise. IEEE Signal Process. Lett. 2022, 29, 1037–1041. [Google Scholar] [CrossRef]
- Wang, M.; Fang, X.; Wang, Y.; Ding, J.; Sun, Y.; Luo, J.; Pu, H. A dual-loop active vibration control technology with an RBF-RLS adaptive algorithm. Mech. Syst. Signal Process. 2023, 191, 110079. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, D.; Xiao, Y.; Zheng, Y.; Wang, S. Error reused filtered-X least mean square algorithm for active noise control. IEEE/ACM Trans. Audio Speech Lang. Process. 2023, 32, 397–412. [Google Scholar] [CrossRef]
- Su, X.; Shi, D.; Zhu, Z.; Gan, W.S.; Ye, L. Spatial-Frequency-Based Selective Fixed-Filter Algorithm for Multichannel Active Noise Control. IEEE Signal Process. Lett. 2024, 31, 2635–2639. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Mukherjee, A. ImdLMS: An Imputation Based LMS Algorithm for Linear System Identification with Missing Input Data. IEEE Trans. Signal Process. 2020, 68, 2370–2385. [Google Scholar] [CrossRef]
- Samarasinghe, P.N.; Zhang, W.; Abhayapala, T.D. Recent Advances in Active Noise Control inside Automobile Cabins: Toward Quieter Cars. IEEE Signal Process. Mag. 2016, 33, 61–73. [Google Scholar] [CrossRef]
- Aslam, M.S.; Shi, P.; Lim, C.-C. Robust Active Noise Control Design by Optimal Weighted Least Squares Approach. IEEE Trans. Circuits Syst. I: Regul. Pap. 2019, 66, 3955–3967. [Google Scholar] [CrossRef]
- Kurian, N.C.; Patel, K.; George, N.V. Robust Active Noise Control: An Information Theoretic Learning Approach. Appl. Acoust. 2017, 117, 180–184. [Google Scholar] [CrossRef]
- Liu, W.; Pokharel, P.P.; Principe, J.C. Correntropy: Properties and Applications in Non-Gaussian Signal Processing. IEEE Trans. Signal Process. 2007, 55, 5286–5298. [Google Scholar] [CrossRef]
- Chien, Y.-R.; Yu, C.-H.; Tsao, H.-W. Affine-Projection-like Maximum Correntropy Criteria Algorithm for Robust Active Noise Control. IEEE/ACM Trans. Audio Speech Lang. Process. 2022, 30, 2255–2266. [Google Scholar] [CrossRef]
- Wen, P.; Wu, Q.; Qu, B.; Yan, L.; Huang, F. Robust Multi-Reference Adaptive Gain FxLMS Algorithm for Active Impulsive Noise Control. Appl. Acoust. 2024, 222, 110063. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Q.; Yin, Y. Active Control of Impulsive Noise with Symmetric α-Stable Distribution Based on an Improved Step-Size Normalized Adaptive Algorithm. Mech. Syst. Signal Process. 2015, 56, 320–339. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, B.; Principe, J.C. An Adaptive Kernel Width Update for Correntropy. In Proceedings of the 2012 International Joint Conference On Neural Networks (IJCNN), Brisbane, Australia, 10–15 June 2012; pp. 1–5. [Google Scholar]
- Wang, W.; Zhao, J.; Qu, H.; Chen, B.; Principe, J.C. An Adaptive Kernel Width Update Method of Correntropy for Channel Estimation. In Proceedings of the 2015 IEEE International Conference on Digital Signal Processing (DSP), Singapore, 21–24 July 2015; pp. 916–920. [Google Scholar]
Algorithms | Computation Time (Seconds) |
---|---|
FxLMS | 0.3799 |
FxMCC | 0.5214 |
FxImdLMS | 2.4157 |
FxImdMCC | 2.7283 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zheng, Z.; Shao, Z.; Han, Y. Active Impulsive Noise Control with Missing Input Data Based on FxImdMCC Algorithm. Electronics 2024, 13, 4319. https://doi.org/10.3390/electronics13214319
Li X, Zheng Z, Shao Z, Han Y. Active Impulsive Noise Control with Missing Input Data Based on FxImdMCC Algorithm. Electronics. 2024; 13(21):4319. https://doi.org/10.3390/electronics13214319
Chicago/Turabian StyleLi, Xi, Zongsheng Zheng, Ziyuan Shao, and Yuhang Han. 2024. "Active Impulsive Noise Control with Missing Input Data Based on FxImdMCC Algorithm" Electronics 13, no. 21: 4319. https://doi.org/10.3390/electronics13214319
APA StyleLi, X., Zheng, Z., Shao, Z., & Han, Y. (2024). Active Impulsive Noise Control with Missing Input Data Based on FxImdMCC Algorithm. Electronics, 13(21), 4319. https://doi.org/10.3390/electronics13214319