Conditional Community Search Based on Weight Information
Abstract
:1. Introduction
- The limitations of existing methods for conditional community search are addressed to provide users with more accurate conditional communities.
- To improve the search efficiency, an improved method is proposed for effectively calculating the weights of the nodes.
- Two improved methods are explored for performing conditional community search based on weight information.
- Extensive experiments on three real graph datasets are conducted. The results demonstrate that our search methods are efficient in searching for conditional community in large graphs based on weight information.
2. Related Work
2.1. Community Search in Graphs
2.2. Conditional Community Search
3. Problem Formulation
Preliminary
- (i)
- Degree condition. Every node has at least k neighbors in H;
- (ii)
- Connectivity. The subgraph H is connected;
- (iii)
- Maximality. There exists no other subgraph satisfying the above two conditions, and .
- (1)
- H contains all necessary nodes required in S;
- (2)
- H is a k-core;
- (3)
- For any node v in H, the weight of v is no less than the weight threshold λ.
4. Algorithm Design
4.1. Basic Algorithm for Conditional Community Search
Algorithm 1: Calculate the weights of nodes |
Algorithm 2: Basic CCS |
4.2. Optimized Algorithms
4.2.1. Search Method after Removing Unqualified Nodes
Algorithm 3: ImCCS |
4.2.2. Conditional Community Search Based on Core Decomposition
Algorithm 4: CDCCS |
5. Experiments
6. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.; Peng, X.; Niu, Y.; Gui, Z. MFM: A Multiple-Features Model for Leisure Event Recommendation in Geotagged Social Networks. Electronics 2024, 13, 112. [Google Scholar] [CrossRef]
- Chen, Z.; Zhuang, J.; Wang, X.; Tang, X.; Yang, K.; Du, M.; Zhou, J. Top-k Graph Similarity Search Algorithm Based on Chi-Square Statistics in Probabilistic Graphs. Electronics 2024, 13, 192. [Google Scholar] [CrossRef]
- Fang, Y.; Huang, X.; Qin, L.; Zhang, Y.; Zhang, W.; Cheng, R.; Lin, X. A survey of community search over big graphs. VLDB J. 2020, 29, 353–392. [Google Scholar] [CrossRef]
- Zhu, J.C.; Wang, C.K. Approaches to community search under complex conditions. J. Softw. 2019, 30, 552–572. [Google Scholar]
- Wu, Y.; Zhao, J.; Sun, R.; Chen, C.; Wang, X. Efficient personalized influential community search in large networks. Data Sci. Eng. 2021, 6, 310–322. [Google Scholar] [CrossRef]
- Sun, H.; Huang, R.; Jia, X.; He, L.; Sun, M.; Wang, P.; Sun, Z.; Huang, J. Community search for multiple nodes on attribute graphs. Knowl.-Based Syst. 2020, 193, 105393. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, Y.; Zhong, M.; Yu, J.X. On Time-optimal (k, p)-core Community Search in Dynamic Graphs. In Proceedings of the 38th International Conference on Data Engineering, Kuala Lumpur, Malaysia, 9–12 May 2022; pp. 1396–1407. [Google Scholar]
- Miao, X.; Liu, Y.; Chen, L.; Gao, Y.; Yin, J. Reliable community search on uncertain graphs. In Proceedings of the 38th International Conference on Data Engineering, Kuala Lumpur, Malaysia, 9–12 May 2022; pp. 1166–1179. [Google Scholar]
- Dong, Z.; Huang, X.; Yuan, G.; Zhu, H.; Xiong, H. Butterfly-core community search over labeled graphs. Proc. VLDB Endow. 2021, 14, 2006–2018. [Google Scholar] [CrossRef]
- Barbieri, N.; Bonchi, F.; Galimberti, E.; Gullo, F. Efficient and effective community search. Data Min. Knowl. Discov. 2015, 29, 1406–1433. [Google Scholar] [CrossRef]
- Cui, W.; Xiao, Y.; Wang, H.; Wang, W. Local search of communities in large graphs. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, Snowbird, UT, USA, 22–27 June 2014; pp. 991–1002. [Google Scholar]
- Sozio, M.; Gionis, A. The community-search problem and how to plan a successful cocktail party. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 25–28 July 2010; pp. 939–948. [Google Scholar]
- Yuan, L.; Qin, L.; Zhang, W.; Chang, L.; Yang, J. Index-based densest clique percolation community search in networks. IEEE Trans. Knowl. Data Eng. 2017, 30, 922–935. [Google Scholar] [CrossRef]
- Yang, D.N.; Chen, Y.L.; Lee, W.C.; Chen, M.S. On social-temporal group query with acquaintance constraint. Proc. VLDB Endow. 2011, 4, 397–408. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, Q.; Fang, Y.; Ma, C. A Counting-based Approach for Efficient k-Clique Densest Subgraph Discovery. Proc. ACM Manag. Data 2024, 2, 1–27. [Google Scholar] [CrossRef]
- Huang, X.; Lakshmanan, L.V.; Yu, J.X.; Cheng, H. Approximate closest community search in networks. Proc. VLDB Endow. 2015, 9, 276–287. [Google Scholar] [CrossRef]
- Huang, X.; Lakshmanan, L.V.S. Attribute-driven community search. Proc. VLDB Endow. 2017, 10, 949–960. [Google Scholar] [CrossRef]
- Zheng, Z.; Ye, F.; Li, R.H.; Ling, G.; Jin, T. Finding weighted k-truss communities in large networks. Inf. Sci. 2017, 417, 344–360. [Google Scholar] [CrossRef]
- Hu, J.; Wu, X.; Cheng, R.; Luo, S.; Fang, Y. On minimal steiner maximum-connected subgraph queries. IEEE Trans. Knowl. Data Eng. 2017, 29, 2455–2469. [Google Scholar] [CrossRef]
- Kim, D.; Kim, S.; Kim, J.; Kim, J.; Feng, K.; Lim, S.; Kim, J. Experimental analysis and evaluation of cohesive subgraph discovery. Inf. Sci. 2024, 672, 120664. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, L.; Wang, X.; Wang, L.; Li, S. Attribute-sensitive community search over attributed heterogeneous information networks. Expert Syst. Appl. 2024, 235, 121153. [Google Scholar] [CrossRef]
- Li, M.; Borovica-Gajic, R.; Choudhury, F.M.; Cui, N.; Ding, L. Maximal size constraint community search over bipartite graphs. Knowl.-Based Syst. 2024, 297, 111961. [Google Scholar] [CrossRef]
- Liao, X.; Liu, Q.; Huang, X.; Xu, J. Truss-Based Community Search over Streaming Directed Graphs. Proc. VLDB Endow. 2024, 17, 1816–1829. [Google Scholar] [CrossRef]
- Lin, L.; Yuan, P.; Li, R.H.; Zhu, C.; Qin, H.; Jin, H.; Jia, T. QTCS: Efficient Query-Centered Temporal Community Search. Proc. VLDB Endow. 2024, 17, 1187–1199. [Google Scholar] [CrossRef]
- Tang, Y.; Li, J.; Haldar, N.A.H.; Guan, Z.; Xu, J.; Liu, C. Reliability-driven local community search in dynamic networks. IEEE Trans. Knowl. Data Eng. 2023, 36, 809–822. [Google Scholar] [CrossRef]
- Gao, J.; Chen, J.; Oloulade, B.M.; Al-Sabri, R.; Lyu, T.; Zhang, J.; Li, Z. Commgnas: Unsupervised graph neural architecture search for community detection. IEEE Trans. Emerg. Top. Comput. 2023, 12, 444–454. [Google Scholar] [CrossRef]
- Chen, J.; Gao, J.; Cui, B. ICS-GNN+: Lightweight interactive community search via graph neural network. VLDB J. 2023, 32, 447–467. [Google Scholar] [CrossRef]
- Wang, J.; Wang, K.; Lin, X.; Zhang, W.; Zhang, Y. Efficient Unsupervised Community Search with Pre-trained Graph Transformer. arXiv 2024, arXiv:2403.18869. [Google Scholar] [CrossRef]
- Wang, Y.; Gou, X.; Xu, X.; Geng, Y.; Ke, X.; Wu, T.; Yu, Z.; Chen, R.; Wu, X. Scalable community search over large-scale graphs based on graph transformer. In Proceedings of the ACM SIGIR, Washington, DC, USA, 14–18 July 2024; pp. 1680–1690. [Google Scholar]
- Wang, J.; Wang, K.; Lin, X.; Zhang, W.; Zhang, Y. Neural Attributed Community Search at Billion Scale. Proc. ACM Manag. Data 2024, 1, 1–25. [Google Scholar] [CrossRef]
- Cheng, J.; Ke, Y.; Chu, S.; Özsu, M.T. Efficient core decomposition in massive networks. In Proceedings of the 2011 IEEE 27th International Conference on Data Engineering, Hannover, Germany, 11–16 April 2011; pp. 51–62. [Google Scholar]
- Wang, J.; Cheng, J. Truss decomposition in massive networks. Proc. VLDB Endow. 2012, 5, 812–823. [Google Scholar] [CrossRef]
- Qin, L.; Li, R.H.; Chang, L.; Zhang, C. Locally densest subgraph discovery. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, 10–13 August 2015; pp. 965–974. [Google Scholar]
- Seidman, S.B. Network structure and minimum degree. Soc. Netw. 1983, 5, 269–287. [Google Scholar] [CrossRef]
- Chen, T.; Li, M. The weights can be harmful: Pareto search versus weighted search in multi-objective search-based software engineering. ACM Trans. Softw. Eng. Methodol. 2023, 32, 1–40. [Google Scholar] [CrossRef]
- Batagelj, V.; Zaversnik, M. An o (m) algorithm for cores decomposition of networks. arXiv 2003, arXiv:cs/0310049. [Google Scholar]
Search Condition | Detail |
---|---|
Networks | # Nodes | # Edges | # Community |
---|---|---|---|
334,863 | 925,872 | 75,149 | |
317,080 | 1,049,866 | 13,477 | |
1,134,890 | 2,987,624 | 8385 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Ma, D.; Fu, Q.; Zong, C. Conditional Community Search Based on Weight Information. Electronics 2024, 13, 4321. https://doi.org/10.3390/electronics13214321
Wang M, Ma D, Fu Q, Zong C. Conditional Community Search Based on Weight Information. Electronics. 2024; 13(21):4321. https://doi.org/10.3390/electronics13214321
Chicago/Turabian StyleWang, Mengxiang, Dong Ma, Qiang Fu, and Chuanyu Zong. 2024. "Conditional Community Search Based on Weight Information" Electronics 13, no. 21: 4321. https://doi.org/10.3390/electronics13214321
APA StyleWang, M., Ma, D., Fu, Q., & Zong, C. (2024). Conditional Community Search Based on Weight Information. Electronics, 13(21), 4321. https://doi.org/10.3390/electronics13214321