Enhancing Rate-Splitting-Based Distributed Edge Computing via Multi-Group Information Recycling
Abstract
:1. Introduction
- A multi-group information recycling scheme for rate-splitting-based distributed edge computing is proposed in this work for processing latency reduction;
- To obtain a good EN grouping strategy, a K-medoids-based grouping algorithm is designed by jointly considering the channel alignment and the channel strength for the general multi-antenna case, and a more efficient continuous partitioning-based grouping algorithm is proposed for the special case of single-antenna;
- By exploiting the inherent structure of the corresponding latency optimization problem and bounding via difference of convex (DC) programming, a convex–concave procedure (CCCP)-based algorithm is developed to find a reasonably good solution.
2. Related Work
3. System Model
3.1. System Model
3.1.1. Communication Phase
3.1.2. Computation Phase
3.2. Conventional Information Recycling
Algorithm 1 The collaborative computing process of information recycling |
|
4. Proposed Multi-Group Information Recycling
4.1. Multi-Group Information Recycling Scheme
4.2. Problem Formulation
5. Optimization Algorithm
5.1. EN Grouping
Algorithm 2 K-medoids-based grouping algorithm |
|
5.2. Optimization Algorithm with Given Grouping
Algorithm 3 CCCP-based optimization for problem |
|
6. Simulation Results
7. Conclusions and Further Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Proof of Proposition 1
References
- Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A Survey on Mobile Edge Computing: The Communication Perspective. IEEE Commun. Surv. Tuts. 2017, 19, 2322–2358. [Google Scholar] [CrossRef]
- Wang, X.; Han, Y.; Leung, V.C.M.; Niyato, D.; Yan, X.; Chen, X. Convergence of Edge Computing and Deep Learning: A Comprehensive Survey. IEEE Commun. Surv. Tuts. 2020, 22, 869–904. [Google Scholar] [CrossRef]
- Gong, X. Delay-Optimal Distributed Edge Computing in Wireless Edge Networks. In Proceedings of the IEEE INFOCOM, Toronto, ON, Canada, 6–9 July 2020. [Google Scholar]
- Chen, M.; Gunduz, D.; Huang, K.; Saad, W.; Bennis, M.; Feljan, A.V.; Poor, H.V. Distributed Learning in Wireless Networks: Recent Progress and Future Challenges. IEEE J. Sel. Areas Commun. 2021, 39, 3579–3605. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Nguyen, D.N.; Hoang, D.T.; Phan, K.T.; Niyato, D.; Pham, H.A.; Dutkiewicz, E. Elastic Resource Allocation for Coded Distributed Computing over Heterogeneous Wireless Edge Networks. IEEE Trans. Wirel. Commun. 2023, 22, 2636–2649. [Google Scholar] [CrossRef]
- Dutta, S.; Jeong, H.; Yang, Y.; Cadambe, V.; Low, T.M.; Grover, P. Addressing unreliability in emerging devices and non-von Neumann architectures using coded computing. Proc. IEEE 2020, 108, 1219–1234. [Google Scholar] [CrossRef]
- Zhu, J.; Li, S. Generalized Lagrange Coded Computing: A Flexible Computation-Communication Tradeoff. In Proceedings of the IEEE ISIT, Espoo, Finland, 26 June–1 July 2022. [Google Scholar]
- Ng, J.S.; Lim, W.Y.B.; Luong, N.C.; Xiong, Z.; Asheralieva, A.; Niyato, D.; Leung, C.; Miao, C. A Comprehensive Survey on Coded Distributed Computing: Fundamentals, Challenges, and Networking Applications. IEEE Commun. Surv. Tuts. 2021, 23, 1800–1837. [Google Scholar] [CrossRef]
- Lee, K.; Lam, M.; Pedarsani, R.; Papailiopoulos, D.; Ramchandran, K. Speeding Up Distributed Machine Learning Using Codes. IEEE Trans. Inf. Theory 2018, 64, 1514–1529. [Google Scholar] [CrossRef]
- Shah, N.B.; Lee, K.; Ramchandran, K. When Do Redundant Requests Reduce Latency? IEEE Trans. Commun. 2016, 64, 715–722. [Google Scholar] [CrossRef]
- Wang, D.; Joshi, G.; Wornell, G.W. Efficient Straggler Replication in Large-Scale Parallel Computing. ACM Trans. Model. Perform. Eval. Comput. Syst. 2019, 4, 1–23. [Google Scholar] [CrossRef]
- Behrouzi-Far, A.; Soljanin, E. Efficient Replication for Fast and Predictable Performance in Distributed Computing. IEEE/ACM Trans. Netw. 2021, 29, 1467–1476. [Google Scholar] [CrossRef]
- Ramamoorthy, A.; Das, A.B.; Tang, L. Straggler-Resistant Distributed Matrix Computation via Coding Theory: Removing a Bottleneck in Large-Scale Data Processing. IEEE Signal Process. Mag. 2020, 37, 136–145. [Google Scholar] [CrossRef]
- Blumofe, R.D.; Leiserson, C.E. Scheduling multithreaded computations by work stealing. J. ACM 1999, 46, 720–748. [Google Scholar] [CrossRef]
- Harlap, A.; Cui, H.; Dai, W.; Wei, J.; Ganger, G.R.; Gibbons, P.B.; Gibson, G.A.; Xing, E.P. Addressing the straggler problem for iterative convergent parallel ML. In Proceedings of the ACM Symposium on Cloud Computing, Santa Clara, CA, USA, 5–7 October 2016. [Google Scholar]
- Liang, W.; Li, T.; He, X. Information Recycling Assisted Collaborative Edge Computing for Distributed Learning. In Proceedings of the IEEE INFOCOM WKSHPS, Hoboken, NJ, USA, 17–20 May 2023. [Google Scholar]
- Clerckx, B.; Mao, Y.; Jorswieck, E.A.; Yuan, J.; Love, D.J.; Erkip, E.; Niyato, D. A Primer on Rate-Splitting Multiple Access: Tutorial, Myths, and Frequently Asked Questions. IEEE J. Sel. Areas Commun. 2023, 41, 1265–1308. [Google Scholar] [CrossRef]
- Mao, Y.; Dizdar, O.; Clerckx, B.; Schober, R.; Popovski, P.; Poor, H.V. Rate-Splitting Multiple Access: Fundamentals, Survey, and Future Research Trends. IEEE Commun. Surv. Tuts. 2022, 24, 2073–2126. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Ding, Z.; Wang, Z.; Chen, S.; Hanzo, L. A Survey of Non-Orthogonal Multiple Access for 5G. IEEE Commun. Surv. Tuts. 2018, 20, 2294–2323. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, H. Completion Time Minimization of Fog-RAN-Assisted Federated Learning with Rate-Splitting Transmission. IEEE Trans. Veh. Technol. 2022, 71, 10209–10214. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Park, H.; Kim, M.; Park, L. DRL-Enabled RSMA-Assisted Task Offloading in Multi-Server Edge Computing. In Proceedings of the ICOIN, Ho Chi Minh City, Vietnam, 17–19 January 2024. [Google Scholar]
- Zhu, B.; Chi, K.; Liu, J.; Yu, K.; Mumtaz, S. Efficient Offloading for Minimizing Task Computation Delay of NOMA-Based Multiaccess Edge Computing. IEEE Trans. Commun. 2022, 70, 3186–3203. [Google Scholar] [CrossRef]
- Ding, Z.; Fan, P.; Poor, H.V. Impact of Non-Orthogonal Multiple Access on the Offloading of Mobile Edge Computing. IEEE Trans. Wirel. Commun. 2019, 67, 375–390. [Google Scholar] [CrossRef]
- Diamanti, M.; Pelekis, C.; Tsiropoulou, E.E.; Papavassiliou, S. Delay Minimization for Rate-Splitting Multiple Access-Based Multi-Server MEC Offloading. IEEE/ACM Trans. Netw. 2024, 32, 1035–1047. [Google Scholar] [CrossRef]
- Dai, M.; Clerckx, B.; Gesbert, D.; Caire, G. A Rate Splitting Strategy for Massive MIMO with Imperfect CSIT. IEEE Trans. Wirel. Commun. 2016, 15, 4611–4624. [Google Scholar] [CrossRef]
- Wang, Y.; Wong, V.W.S.; Wang, J. Flexible Rate-Splitting Multiple Access with Finite Blocklength. IEEE J. Sel. Areas Commun. 2023, 41, 1398–1412. [Google Scholar] [CrossRef]
- Ko, D.; Chae, S.H.; Choi, W. MDS Coded Task Offloading in Stochastic Wireless Edge Computing Networks. IEEE Trans. Wirel. Commun. 2022, 21, 2107–2121. [Google Scholar] [CrossRef]
- Yu, Q.; Maddah-Ali, M.A.; Avestimehr, A.S. Straggler Mitigation in Distributed Matrix Multiplication: Fundamental Limits and Optimal Coding. IEEE Trans. Inf. Theory 2020, 66, 1920–1933. [Google Scholar] [CrossRef]
- Peng, P.; Soljanin, E.; Whiting, P. Diversity/Parallelism Trade-Off in Distributed Systems with Redundancy. IEEE Trans. Inf. Theory 2022, 68, 1279–1295. [Google Scholar] [CrossRef]
- Bekkerman, R.; Bilenko, M.; Langford, J. Scaling up Machine Learning: Parallel and Distributed Approaches; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Ding, Z.; Xu, J.; Dobre, O.A.; Poor, H.V. Joint Power and Time Allocation for NOMA–MEC Offloading. IEEE Trans. Veh. Technol. 2019, 68, 6207–6211. [Google Scholar] [CrossRef]
- Kiani, A.; Ansari, N. Edge Computing Aware NOMA for 5G Networks. IEEE Internet Things J. 2018, 5, 1299–1306. [Google Scholar] [CrossRef]
- Park, H.S.; Jun, C.H. A simple and fast algorithm for K-medoids clustering. Expert Syst. Appl. 2009, 36, 3336–3341. [Google Scholar] [CrossRef]
- Ahmed, M.; Seraj, R.; Islam, S.M.S. The k-means algorithm: A comprehensive survey and performance evaluation. Electronics 2020, 9, 1295. [Google Scholar] [CrossRef]
- Sun, Y.; Babu, P.; Palomar, D.P. Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning. IEEE Trans. Signal Process. 2017, 65, 794–816. [Google Scholar] [CrossRef]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Goldsmith, A. Wireless Communications; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Li, Z.; Ye, C.; Cui, Y.; Yang, S.; Shamai, S. Rate Splitting for Multi-Antenna Downlink: Precoder Design and Practical Implementation. IEEE J. Sel. Areas Commun. 2020, 38, 1910–1924. [Google Scholar] [CrossRef]
- Sadeghabadi, E.; Blostein, S. Low Complexity Rate Splitting Using Hierarchical User Grouping. In Proceedings of the IEEE ICC WKSHPS, Montreal, QC, Canada, 14–23 June 2021. [Google Scholar]
- Behrouzi-Far, A.; Soljanin, E. Redundancy Scheduling in Systems with Bi-Modal Job Service Time Distributions. In Proceedings of the Allerton, Monticello, IL, USA, 24–27 September 2019. [Google Scholar]
- Tandon, R.; Lei, Q.; Dimakis, A.G.; Karampatziakis, N. Gradient Coding: Avoiding Stragglers in Distributed Learning. In Proceedings of the ICML, Sydney, NSW, Australia, 6–11 August 2017. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, W.; He, X. Enhancing Rate-Splitting-Based Distributed Edge Computing via Multi-Group Information Recycling. Electronics 2024, 13, 4403. https://doi.org/10.3390/electronics13224403
Liang W, He X. Enhancing Rate-Splitting-Based Distributed Edge Computing via Multi-Group Information Recycling. Electronics. 2024; 13(22):4403. https://doi.org/10.3390/electronics13224403
Chicago/Turabian StyleLiang, Wanlin, and Xiaofan He. 2024. "Enhancing Rate-Splitting-Based Distributed Edge Computing via Multi-Group Information Recycling" Electronics 13, no. 22: 4403. https://doi.org/10.3390/electronics13224403
APA StyleLiang, W., & He, X. (2024). Enhancing Rate-Splitting-Based Distributed Edge Computing via Multi-Group Information Recycling. Electronics, 13(22), 4403. https://doi.org/10.3390/electronics13224403