Fixed-Time Consensus Multi-Agent-Systems-Based Speed Cooperative Control for Multiple Permanent Magnet Synchronous Motors with Complementary Sliding Mode Control
Abstract
:1. Introduction
- This paper innovatively considers the multi-PMSM speed control system as a MAS, transforming the problem of coordinated speed control of multi-PMSMs into a consensus problem of MASs.
- The designed consensus protocol enables the system to converge within a fixed time. Additionally, a terminal integral sliding mode observer (TISMO) is designed to observe disturbances and compensate for them, thereby obtaining the desired q-axis current.
- Within the framework of PMSM vector control, a CSMC current loop controller is designed for each PMSM system, effectively suppressing system chattering and enhancing the robustness of the system.
2. Preliminaries
2.1. Mathematical Model of Multi-PMSMs System
2.2. Graph Theory
2.3. Problem Formulation
2.4. Related Lemmas
- (1)
- The Laplacian matrix of an undirected graph is semi-definite, with one eigenvalue equal to 0. If the undirected graph is connected, all other eigenvalues are positive.
- (2)
- The second smallest eigenvalue of the Laplacian matrix of an undirected graph satisfies
- (3)
- For any , have
2.5. Traditional DCC Method
3. Design of Fixed-Time Consensus Protocol
3.1. Design of Consistency Protocol
3.2. Disturbance Observer Design
4. Design of the Current Loop for the Multi-PMSM Speed Control System
5. Experimental Validation
5.1. Comparative Experiments on Speed-Up and Speed-Down as Well as Forward and Reverse Operation
5.2. Comparative Experiments on a Sudden Load and Sudden Relief Load
5.3. Comparative Experiments on Low-Speed
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, Z.; Cheng, Y.; Chen, S.; Zhang, X.; Xiang, J.; Wang, S.A. Improved Active Disturbance Rejection Control for Permanent Magnet Synchronous Motor. Electronics 2024, 13, 3023. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, L.; Wang, Y.; Zhou, X.; Tong, Y. Research on Active Disturbance Rejection Control with Parameter Tuning for Permanent Magnet Synchronous Motor Based on Improved PSO Algorithm. Electronics 2024, 13, 3436. [Google Scholar] [CrossRef]
- Choi, J.H.; Nam, K.; Oh, S. High-Accuracy Driving Control of a Stone-Throwing Mobile Robot for Curling. IEEE Trans. Autom. Sci. Eng. 2022, 19, 3210–3221. [Google Scholar] [CrossRef]
- Yeam, T.I.; Lee, D.C. Design of Sliding-Mode Speed Controller with Active Damping Control for Single-Inverter Dual-PMSM Drive Systems. IEEE Trans. Power Electron. 2021, 36, 5794–5801. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.S.; An, J.F.; Zhang, Q.S.; Zhu, Y.D.; Liu, H.X.; Sun, H.X. Control Strategy of Biaxial Variable Gain Cross-Coupled Permanent Magnet Synchronous Linear Motor Based on MPC-MRAS. IEEE Trans. Ind. Appl. 2022, 58, 4733–4743. [Google Scholar] [CrossRef]
- Li, L.B.; Sun, L.L.; Zhang, S.Z. Mean Deviation Coupling Synchronous Control for Multiple Motors via Second-Order Adaptive Sliding Mode Control. Isa Trans. 2016, 62, 222–235. [Google Scholar] [CrossRef]
- Wang, Y.W.; Zhang, W.A.; Yu, L. GESO-Based Position Synchronization Control of Networked Multiaxis Motion System. IEEE Trans. Ind. Inf. 2020, 16, 248–257. [Google Scholar] [CrossRef]
- Gao, B.K.; Liu, Y.J.; Liu, L. Fixed-Time Neural Control of a Quadrotor UAV with Input and Attitude Constraints. IEEE/CAA J. Autom Sin. 2023, 10, 281–283. [Google Scholar] [CrossRef]
- He, G.J.; Cui, S.B.; Dai, Y.Y.; Jiang, T. Learning Task-Oriented Channel Allocation for Multi-Agent Communication. IEEE Trans. Veh. Technol. 2022, 71, 12016–12029. [Google Scholar] [CrossRef]
- Dai, Y.C.; Zhang, L.Y.; Xu, D.Z.; Chen, Q.H.; Yan, X.G. Anti-Disturbance Cooperative Fuzzy Tracking Control of Multi-PMSMs Low-Speed Urban Rail Traction Systems. IEEE Trans. Transp. Electrif. 2022, 8, 1040–1052. [Google Scholar] [CrossRef]
- Meng, W.C.; Yang, Q.M.; Sarangapani, J.; Sun, Y.X. Distributed Control of Nonlinear Multiagent Systems with Asymptotic Consensus. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 749–757. [Google Scholar] [CrossRef]
- Li, K.; Hua, C.C.; You, X.; Guan, X.P. Finite-Time Observer-Based Leader-Following Consensus for Nonlinear Multiagent Systems with Input Delays. IEEE Trans. Cybern. 2021, 51, 5850–5858. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.L.; Dong, P.; Liu, M.B.; Yang, G.K. A Distributed Coordination Control Based on Finite-Time Consensus Algorithm for a Cluster of DC Microgrids. IEEE Trans. Power Syst. 2019, 34, 2205–2215. [Google Scholar] [CrossRef]
- Luo, Y.P.; Zhu, W.L.; Cao, J.D.; Rutkowski, L. Event-Triggered Finite-Time Guaranteed Cost H-Infinity Consensus for Nonlinear Uncertain Multi-Agent Systems. IEEE Trans. Netw. Sci. Eng. 2022, 9, 1527–1539. [Google Scholar] [CrossRef]
- He, S.L.; Wang, H.; Yu, W.W. Distributed Fast Finite-Time Tracking Consensus of Multi-Agent Systems with a Dynamic Leader. IEEE Trans. Circuits Syst. II Exp. Briefs 2022, 69, 2176–2180. [Google Scholar] [CrossRef]
- Ran, G.T.; Liu, J.; Li, C.J.; Chen, L.M.; Li, D.Y. Event-Based Finite-Time Consensus Control of Second-Order Delayed Multi-Agent Systems. IEEE Trans. Circuits Syst. II Exp. Briefs 2021, 68, 276–280. [Google Scholar] [CrossRef]
- Ni, J.K.; Tang, Y.; Shi, P. A New Fixed-Time Consensus Tracking Approach for Second-Order Multiagent Systems Under Directed Communication Topology. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 2488–2500. [Google Scholar] [CrossRef]
- Repecho, V.; Sierra-González, A.; Ibarra, E.; Biel, D.; Arias, A. Enhanced DC-Link Voltage Utilization for Sliding-Mode-Controlled PMSM Drives. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 2850–2857. [Google Scholar] [CrossRef]
- Yin, Y.F.; Liu, L.; Vazquez, S.; Xu, R.Q.; Dong, Z.J.; Liu, J.X.; Leon, J.I.; Wu, L.G.; Franquelo, L.G. Disturbance and Uncertainty Attenuation for Speed Regulation of PMSM Servo System Using Adaptive Optimal Control Strategy. IEEE Trans. Transp. Electrif. 2023, 9, 3410–3420. [Google Scholar] [CrossRef]
- Hou, S.X.; Chu, Y.D.; Fei, J.T. Intelligent Global Sliding Mode Control Using Recurrent Feature Selection Neural Network for Active Power Filter. IEEE Trans. Ind. Electron. 2021, 68, 7320–7329. [Google Scholar] [CrossRef]
- Lin, F.J.; Hung, Y.C.; Tsai, M.T. Fault-Tolerant Control for Six-Phase PMSM Drive System via Intelligent Complementary Sliding-Mode Control Using TSKFNN-AMF. IEEE Trans. Ind. Electron. 2013, 60, 5747–5762. [Google Scholar] [CrossRef]
- Liu, Y.C.; Laghrouche, S.; Depernet, D.; Djerdir, A.; Cirrincione, M. Disturbance-Observer-Based Complementary Sliding-Mode Speed Control for PMSM Drives: A Super-Twisting Sliding-Mode Observer-Based Approach. IEEE J. Emerg. Sel. Top Power Electron. 2021, 9, 5416–5428. [Google Scholar] [CrossRef]
- Yang, T.; Deng, Y.T.; Li, H.W.; Sun, Z.; Cao, H.Y.; Wei, Z.E. Fast integral terminal sliding mode control with a novel disturbance observer based on iterative learning for speed control of PMSM. Isa Trans. 2023, 134, 460–471. [Google Scholar] [CrossRef]
- Chiu, C.S. Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems. Automatica 2012, 48, 316–326. [Google Scholar] [CrossRef]
- Zuo, Z.Y.; Tie, L. A new class of finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Control 2014, 87, 363–370. [Google Scholar] [CrossRef]
- Zuo, Z.Y.; Tie, L. Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Syst. Sci. 2016, 47, 1366–1375. [Google Scholar] [CrossRef]
- Chen, C.; Li, L.X.; Peng, H.P.; Yang, Y.X.; Mi, L.; Zhao, H. A new fixed-time stability theorem and its application to the fixed-time synchronization of neural networks. Neural Netw. 2020, 123, 412–419. [Google Scholar] [CrossRef]
- Jin, H.Y.; Zhao, X.M. Complementary sliding mode control via elman neural network for permanent magnet linear servo system. IEEE Access 2019, 7, 82183–82193. [Google Scholar] [CrossRef]
Name and Symbol | Value |
---|---|
Phase resistance | 0.5 |
dq-axis inductance | 0.01 |
Friction coefficient | 0.0043 |
Moment of inertia | 0.00194 |
Flux linkage | 0.1 |
Polo pairs | 2 |
Control Method | Parameter | Value |
---|---|---|
Traditional DCC method | 1.1 | |
3 | ||
New control method | 5 | |
0.9 | ||
10 | ||
3 | ||
5 | ||
7 | ||
5 |
Control Method | Operating Condition | Overshoot Phenomena | Settling Time | Chattering Amplitude |
---|---|---|---|---|
Traditional DCC method | No-load condition | Yes | 5 s | 5 r/min |
Loading condition | Yes | 0.8 s | 5 r/min | |
Low speed condition | Yes | 5 s | 6 r/min | |
New control method | No-load condition | No | 2.5 s | 3 r/min |
Loading condition | No | 1.5 s | 3 r/min | |
Low speed condition | No | 2.5 s | 3 r/min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, L.; Lan, X. Fixed-Time Consensus Multi-Agent-Systems-Based Speed Cooperative Control for Multiple Permanent Magnet Synchronous Motors with Complementary Sliding Mode Control. Electronics 2024, 13, 4407. https://doi.org/10.3390/electronics13224407
Hou L, Lan X. Fixed-Time Consensus Multi-Agent-Systems-Based Speed Cooperative Control for Multiple Permanent Magnet Synchronous Motors with Complementary Sliding Mode Control. Electronics. 2024; 13(22):4407. https://doi.org/10.3390/electronics13224407
Chicago/Turabian StyleHou, Limin, and Xiaoru Lan. 2024. "Fixed-Time Consensus Multi-Agent-Systems-Based Speed Cooperative Control for Multiple Permanent Magnet Synchronous Motors with Complementary Sliding Mode Control" Electronics 13, no. 22: 4407. https://doi.org/10.3390/electronics13224407
APA StyleHou, L., & Lan, X. (2024). Fixed-Time Consensus Multi-Agent-Systems-Based Speed Cooperative Control for Multiple Permanent Magnet Synchronous Motors with Complementary Sliding Mode Control. Electronics, 13(22), 4407. https://doi.org/10.3390/electronics13224407