Mixed Reality-Based Concrete Crack Detection and Skeleton Extraction Using Deep Learning and Image Processing
Abstract
:1. Introduction
- A high dependency on the experience and skill set of individual inspectors;
- The subjective judgments of building surveyors;
- The need for excessive time, cost, and labor;
- The introduction of an MR-based interactive system using Microsoft HoloLens 2. This system enables human inspectors to perform real-time concrete crack detection and skeleton extraction, enhancing the assessment process.
- The integration of DL and IP methods: combining these techniques facilitates the real-time assessment of concrete surfaces, balancing high accuracy and processing speed.
- Comprehensive performance analysis and model comparison. This paper evaluates different models to identify the most accurate and fastest solutions for integration into the MR system.
2. Related Works
2.1. Crack Detection Using Deep Learning
- Classification: labelling the image patch to crack or non-crack;
- Detection: localization of the crack by drawing a bounding box around the crack region;
2.1.1. YOLO for the Crack Detection of Civil Structures
2.1.2. YOLO v5
2.2. Crack Edge Detection Using Image Processing
2.3. AR and MR
2.3.1. AR and MR in Civil Engineering
2.3.2. AR and MR for Defect Detection in Civil Structures
3. An Integrated Method for Crack Detection and Skeleton Extraction
3.1. YOLO v5 Algorithm Network
- In the input part, mosaic data augmentation, adaptive tracing frame calculation, and adaptive picture scaling are followed to enrich the surface dataset, calculate the optimal anchor point box, and avoid creating a lot of redundant information, respectively. These steps will improve training efficiency [63,95].
- The backbone module focuses on the feature extraction of the input image data. It is based on the focus structure, Cross Stage Partial Network (CSPNet), and Spatial Pyramid Pooling (SPP). The focus structure is mainly used for image slicing. The CSPNet is used to extract abundant information features from the input image. Finally, the SPP converts feature maps of all sizes into feature vectors with fixed sizes, thereby enhancing the acceptance field of the network and capturing functions of various sizes [61,95].
- The neck module of the YOLO v5 is responsible for performing the multi-scale feature fusion. It is established using FPN and Path Aggregation Network (PAN) structures that are mainly used to generate a feature pyramid. The FPN is a top–down structure that is used to fuse the feature information with the backbone network part to realize the communication of semantic features, whereas the PAN is a bottom–up structure that is used to realize the communication of strong localization feature information [63,66,96].
- The head module of the YOLO v5 is the final detection stage. Anchor boxes are used in this part to build final output vectors with class probabilities, objectness scores, and bounding boxes. Based on the Intersection Over Union (IOU) (Equation (1)), the generalized Intersection Over Union (GIOU) (Equation (2)) is employed as the loss function of the bounding box during the prediction step [95,96].
3.2. Image Processing-Based Crack Edge Detection
3.2.1. Sobel
3.2.2. Canny
3.2.3. Prewitt
4. Transformation of the Model to the HoloLens
5. Experimental Analysis, Results, and Discussion
5.1. Dataset Preparation
5.1.1. Dataset for Crack Detection
5.1.2. Dataset for Crack Skeleton Extraction
5.2. Assessment Metrics
5.3. Model Implementation and Testing
5.3.1. Crack Detection
5.3.2. Crack Edge Extraction
5.3.3. Integrated Model in the HoloLens
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Habbal, F.; Alnuaimi, A.; Shamsi, M.; Alshaibah, S.; Aldarmaki, T. Cracks Detection using Artificial Intelligence to Enhance Inspection Efficiency and Analyze the Critical Defects. In Proceedings of the International Symposium on Automation and Robotics in Construction, Kitakyushu, Japan, 27–28 October 2020. [Google Scholar]
- Mohan, A.; Poobal, S. Crack detection using image processing: A critical review and analysis. Alex. Eng. J. 2018, 57, 787–798. [Google Scholar] [CrossRef]
- Hoang, N.-D. Detection of Surface Crack in Building Structures Using Image Processing Technique with an Improved Otsu Method for Image Thresholding. Adv. Civ. Eng. 2018, 2018, 3924120. [Google Scholar] [CrossRef]
- Stałowska, P.; Suchocki, C.; Rutkowska, M. Crack detection in building walls based on geometric and radiometric point cloud information. Autom. Constr. 2022, 134, 104065. [Google Scholar] [CrossRef]
- Dhital, D.; Lee, J.R. A Fully Non-Contact Ultrasonic Propagation Imaging System for Closed Surface Crack Evaluation. Exp. Mech. 2012, 52, 1111–1122. [Google Scholar] [CrossRef]
- Munawar, H.S.; Hammad, A.W.A.; Haddad, A.; Soares, C.A.; Waller, S.T. Image-Based Crack Detection Methods: A Review. Infrastructures 2021, 6, 115. [Google Scholar] [CrossRef]
- Yang, G.; Liu, K.; Zhang, J.; Zhao, B.; Zhao, Z.; Chen, X.; Chen, B.M. Datasets and processing methods for boosting visual inspection of civil infrastructure: A comprehensive review and algorithm comparison for crack classification, segmentation, and detection. Constr. Build. Mater. 2022, 356, 129226. [Google Scholar] [CrossRef]
- Hsieh, Y.-A.; Tsai Yichang, J. Machine Learning for Crack Detection: Review and Model Performance Comparison. J. Comput. Civ. Eng. 2020, 34, 04020038. [Google Scholar] [CrossRef]
- Deng, J.; Singh, A.; Zhou, Y.; Lu, Y.; Lee, V.C.-S. Review on computer vision-based crack detection and quantification methodologies for civil structures. Constr. Build. Mater. 2022, 356, 129238. [Google Scholar] [CrossRef]
- Munawar, H.S.; Ullah, F.; Heravi, A.; Thaheem, M.J.; Maqsoom, A. Inspecting Buildings Using Drones and Computer Vision: A Machine Learning Approach to Detect Cracks and Damages. Drones 2022, 6, 5. [Google Scholar] [CrossRef]
- Abdel-Qader, I.; Abudayyeh, O.; Kelly Michael, E. Analysis of Edge-Detection Techniques for Crack Identification in Bridges. J. Comput. Civ. Eng. 2003, 17, 255–263. [Google Scholar] [CrossRef]
- Agaian, S.; Almuntashri, A.; Papagiannakis, A.T. An improved canny edge detection application for asphalt concrete. In Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009; pp. 3683–3687. [Google Scholar]
- Hoang, N.-D.; Nguyen, Q.-L. Metaheuristic Optimized Edge Detection for Recognition of Concrete Wall Cracks: A Comparative Study on the Performances of Roberts, Prewitt, Canny, and Sobel Algorithms. Adv. Civ. Eng. 2018, 2018, 7163580. [Google Scholar] [CrossRef]
- An, Q.; Chen, X.; Wang, H.; Yang, H.; Yang, Y.; Huang, W.; Wang, L. Segmentation of Concrete Cracks by Using Fractal Dimension and UHK-Net. Fractal Fract. 2022, 6, 95. [Google Scholar] [CrossRef]
- Kheradmandi, N.; Mehranfar, V. A critical review and comparative study on image segmentation-based techniques for pavement crack detection. Constr. Build. Mater. 2022, 321, 126162. [Google Scholar] [CrossRef]
- Nguyen, S.D.; Tran, T.S.; Tran, V.P.; Lee, H.J.; Piran, M.J.; Le, V.P. Deep Learning-Based Crack Detection: A Survey. Int. J. Pavement Res. Technol. 2022, 16, 943–967. [Google Scholar] [CrossRef]
- Hamishebahar, Y.; Guan, H.; So, S.; Jo, J. A Comprehensive Review of Deep Learning-Based Crack Detection Approaches. Appl. Sci. 2022, 12, 1374. [Google Scholar] [CrossRef]
- Laxman, K.C.; Tabassum, N.; Ai, L.; Cole, C.; Ziehl, P. Automated crack detection and crack depth prediction for reinforced concrete structures using deep learning. Constr. Build. Mater. 2023, 370, 130709. [Google Scholar] [CrossRef]
- Ali, R.; Chuah, J.H.; Talip, M.S.A.; Mokhtar, N.; Shoaib, M.A. Structural crack detection using deep convolutional neural networks. Autom. Constr. 2022, 133, 103989. [Google Scholar] [CrossRef]
- Gupta, P.; Dixit, M. Image-based crack detection approaches: A comprehensive survey. Multimed. Tools Appl. 2022, 81, 40181–40229. [Google Scholar] [CrossRef]
- Ali, L.; Alnajjar, F.; Khan, W.; Serhani, M.A.; Al Jassmi, H. Bibliometric Analysis and Review of Deep Learning-Based Crack Detection Literature Published between 2010 and 2022. Buildings 2022, 12, 432. [Google Scholar] [CrossRef]
- Li, R.; Yu, J.; Li, F.; Yang, R.; Wang, Y.; Peng, Z. Automatic bridge crack detection using Unmanned aerial vehicle and Faster R-CNN. Constr. Build. Mater. 2023, 362, 129659. [Google Scholar] [CrossRef]
- Ni, T.Y.; Zhou, R.X.; Yang, Y.; Yang, X.C.; Zhang, W.Y.; Lin, C. Research on Detection of Concrete Surface Cracks Based on Smartphone Image. Acta Metrol. Sinca 2021, 42, 1–8. [Google Scholar]
- Chen, X.; Li, J.; Huang, S.; Cui, H.; Liu, P.; Sun, Q. An Automatic Concrete Crack-Detection Method Fusing Point Clouds and Images Based on Improved Otsu’s Algorithm. Sensors 2021, 21, 1581. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.M.; Pais, J.C. Laboratory observation of cracks in road pavements with GPR. Constr. Build. Mater. 2017, 154, 1130–1138. [Google Scholar] [CrossRef]
- Karaaslan, E.; Bagci, U.; Catbas, F.N. Artificial Intelligence Assisted Infrastructure Assessment using Mixed Reality Systems. Transp. Res. Rec. 2019, 2673, 413–424. [Google Scholar] [CrossRef]
- Wang, S.; Zargar, S.A.; Yuan, F.-G. Augmented reality for enhanced visual inspection through knowledge-based deep learning. Struct. Health Monit. 2020, 20, 426–442. [Google Scholar] [CrossRef]
- Moreu, F.; Malek, K. Bridge Cracks Monitoring: Detection, Measurement, and Comparison Using Augmented Reality; Transportation Consortium of South-Central States: Baton Rouge, LA, USA, 2021. [Google Scholar]
- Napolitano, R.; Liu, Z.; Sun, C.; Glisic, B. Combination of Image-Based Documentation and Augmented Reality for Structural Health Monitoring and Building Pathology. Front. Built Environ. 2019, 5, 50. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Shibuya, T.; Kanda, M.; Yasojima, A. Crack Inspection Support System for Concrete Structures Using Head Mounted Display in Mixed Reality Space. In Proceedings of the 2019 58th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Hiroshima, Japan, 10–13 September 2019; pp. 791–796. [Google Scholar]
- Smith, A.; Duff, C.; Sarlo, R.; Gabbard, J.L. Wearable Augmented Reality Interface Design for Bridge Inspection. In Proceedings of the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Christchurch, New Zealand, 12–16 March 2022; pp. 497–501. [Google Scholar]
- Maharjan, D.; Aguero, M.; Lippitt, C.; Moreu, F. Infrastructure Stakeholders’ Perspective in Development and Implementation of New Structural Health Monitoring (SHM) Technologies for Maintenance and Management of Transportation Infrastructure. MATEC Web Conf. 2019, 271, 01010. [Google Scholar] [CrossRef]
- Jain, A.; Gajwani, R.; Manjunath, C.R.; Shetty, S. Holographic imaging system to detect fractures. Int. J. Adv. Res. Ideas Innov. Technol. 2018, 4, 63–68. [Google Scholar]
- Dais, D.; Bal, İ.E.; Smyrou, E.; Sarhosis, V. Automatic crack classification and segmentation on masonry surfaces using convolutional neural networks and transfer learning. Autom. Constr. 2021, 125, 103606. [Google Scholar] [CrossRef]
- Zhang, X.; Rajan, D.; Story, B. Concrete crack detection using context-aware deep semantic segmentation network. Comput. -Aided Civ. Infrastruct. Eng. 2019, 34, 951–971. [Google Scholar] [CrossRef]
- Pham, M.-V.; Ha, Y.-S.; Kim, Y.-T. Automatic detection and measurement of ground crack propagation using deep learning networks and an image processing technique. Measurement 2023, 215, 112832. [Google Scholar] [CrossRef]
- Miao, P.; Srimahachota, T. Cost-effective system for detection and quantification of concrete surface cracks by combination of convolutional neural network and image processing techniques. Constr. Build. Mater. 2021, 293, 123549. [Google Scholar] [CrossRef]
- Ali, L.; Alnajjar, F.; Jassmi, H.A.; Gocho, M.; Khan, W.; Serhani, M.A. Performance Evaluation of Deep CNN-Based Crack Detection and Localization Techniques for Concrete Structures. Sensors 2021, 21, 1688. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, R.; Ahmed, D.; Karkee, M. Comparing YOLOv8 and Mask R-CNN for instance segmentation in complex orchard environments. Artif. Intell. Agric. 2024, 13, 84–99. [Google Scholar] [CrossRef]
- Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 1980, 36, 193–202. [Google Scholar] [CrossRef]
- Li, B.; Wang, K.C.P.; Zhang, A.; Yang, E.; Wang, G. Automatic classification of pavement crack using deep convolutional neural network. Int. J. Pavement Eng. 2020, 21, 457–463. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, M.; Shi, P.; Ren, R.; He, X.; Wei, X.; Yang, H. Crack Detection and Comparison Study Based on Faster R-CNN and Mask R-CNN. Sensors 2022, 22, 1215. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, J.; Cai, F. On Bridge Surface Crack Detection Based on an Improved YOLO v3 Algorithm. IFAC-Pap. 2020, 53, 8205–8210. [Google Scholar] [CrossRef]
- Kim, I.-H.; Jeon, H.; Baek, S.-C.; Hong, W.-H.; Jung, H.-J. Application of Crack Identification Techniques for an Aging Concrete Bridge Inspection Using an Unmanned Aerial Vehicle. Sensors 2018, 18, 1881. [Google Scholar] [CrossRef]
- Hacıefendioğlu, K.; Başağa, H.B. Concrete Road Crack Detection Using Deep Learning-Based Faster R-CNN Method. Iran. J. Sci. Technol. Trans. Civ. Eng. 2022, 46, 1621–1633. [Google Scholar] [CrossRef]
- Attard, L.; Debono, C.J.; Valentino, G.; Castro, M.D.; Masi, A.; Scibile, L. Automatic Crack Detection using Mask R-CNN. In Proceedings of the 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA), Dubrovnik, Croatia, 23–25 September 2019; pp. 152–157. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Kumar Srinath, S.; Wang, M.; Abraham Dulcy, M.; Jahanshahi Mohammad, R.; Iseley, T.; Cheng Jack, C.P. Deep Learning–Based Automated Detection of Sewer Defects in CCTV Videos. J. Comput. Civ. Eng. 2020, 34, 04019047. [Google Scholar] [CrossRef]
- Yan, K.; Zhang, Z. Automated Asphalt Highway Pavement Crack Detection Based on Deformable Single Shot Multi-Box Detector Under a Complex Environment. IEEE Access 2021, 9, 150925–150938. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–15 June 2015. [Google Scholar]
- Park, S.E.; Eem, S.-H.; Jeon, H. Concrete crack detection and quantification using deep learning and structured light. Constr. Build. Mater. 2020, 252, 119096. [Google Scholar] [CrossRef]
- Li, S.; Gu, X.; Xu, X.; Xu, D.; Zhang, T.; Liu, Z.; Dong, Q. Detection of concealed cracks from ground penetrating radar images based on deep learning algorithm. Constr. Build. Mater. 2021, 273, 121949. [Google Scholar] [CrossRef]
- Majidifard, H.; Adu-Gyamfi, Y.; Buttlar, W.G. Deep machine learning approach to develop a new asphalt pavement condition index. Constr. Build. Mater. 2020, 247, 118513. [Google Scholar] [CrossRef]
- Jiang, Y.; Pang, D.; Li, C. A deep learning approach for fast detection and classification of concrete damage. Autom. Constr. 2021, 128, 103785. [Google Scholar] [CrossRef]
- Li, W.; Shen, Z.; Li, P. Crack Detection of Track Plate Based on YOLO. In Proceedings of the 2019 12th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 14–15 December 2019; pp. 15–18. [Google Scholar]
- Deng, J.; Lu, Y.; Lee, V.C.-S. Imaging-based crack detection on concrete surfaces using You Only Look Once network. Struct. Health Monit. 2020, 20, 484–499. [Google Scholar] [CrossRef]
- Nie, M.; Wang, C. Pavement Crack Detection based on yolo v3. In Proceedings of the 2019 2nd International Conference on Safety Produce Informatization (IICSPI), Chongqing, China, 28–30 November 2019; pp. 327–330. [Google Scholar]
- Du, Y.; Pan, N.; Xu, Z.; Deng, F.; Shen, Y.; Kang, H. Pavement distress detection and classification based on YOLO network. Int. J. Pavement Eng. 2021, 22, 1659–1672. [Google Scholar] [CrossRef]
- Mandal, V.; Uong, L.; Adu-Gyamfi, Y. Automated Road Crack Detection Using Deep Convolutional Neural Networks. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; pp. 5212–5215. [Google Scholar]
- Teng, S.; Liu, Z.; Chen, G.; Cheng, L. Concrete Crack Detection Based on Well-Known Feature Extractor Model and the YOLO_v2 Network. Appl. Sci. 2021, 11, 813. [Google Scholar] [CrossRef]
- Oh, C.; Dang, L.M.; Han, D.; Moon, H. Robust Sewer Defect Detection With Text Analysis Based on Deep Learning. IEEE Access 2022, 10, 46224–46237. [Google Scholar] [CrossRef]
- Liu, H.; Yang, C.; Li, A.; Ge, Y.; Huang, S.; Feng, X.; Ruan, Z. Deep Domain Adaptation for Pavement Crack Detection. arXiv 2021, arXiv:2111.10101. [Google Scholar] [CrossRef]
- Hu, G.X.; Hu, B.L.; Yang, Z.; Huang, L.; Li, P. Pavement Crack Detection Method Based on Deep Learning Models. Wirel. Commun. Mob. Comput. 2021, 2021, 5573590. [Google Scholar] [CrossRef]
- Agyemang, I.O.; Zhang, X.; Adjei-Mensah, I.; Mawuli, B.C.; Agbley, B.L.Y.; Fiasam, L.D.; Sey, C. On Salient Concrete Crack Detection Via Improved Yolov5. In Proceedings of the 2021 18th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 17–19 December 2021; pp. 175–178. [Google Scholar]
- Zhao, W.; Liu, Y.; Zhang, J.; Shao, Y.; Shu, J. Automatic pixel-level crack detection and evaluation of concrete structures using deep learning. Struct. Control Health Monit. 2022, 29, e2981. [Google Scholar] [CrossRef]
- Yu, L.; He, S.; Liu, X.; Jiang, S.; Xiang, S. Intelligent Crack Detection and Quantification in the Concrete Bridge: A Deep Learning-Assisted Image Processing Approach. Adv. Civ. Eng. 2022, 2022, 1813821. [Google Scholar] [CrossRef]
- Cubero-Fernandez, A.; Rodriguez-Lozano, F.J.; Villatoro, R.; Olivares, J.; Palomares, J.M. Efficient pavement crack detection and classification. EURASIP J. Image Video Process. 2017, 2017, 39. [Google Scholar] [CrossRef]
- Wang, G.; Tse, P.W.; Yuan, M. Automatic internal crack detection from a sequence of infrared images with a triple-threshold Canny edge detector. Meas. Sci. Technol. 2018, 29, 025403. [Google Scholar] [CrossRef]
- Yang, J.; Choi, J.; Hwang, S.; An, Y.-K.; Sohn, H. A reference-free micro defect visualization using pulse laser scanning thermography and image processing. Meas. Sci. Technol. 2016, 27, 085601. [Google Scholar] [CrossRef]
- Dorafshan, S. Comparing Automated Image-Based Crack Detection Techniques in Spatial and Frequency Domains. In Proceedings of the 26th ASNT Research Symposium, Jacksonville, FL, USA, 13–16 March 2017. [Google Scholar]
- Wang, K.C.P.; Li, Q.; Gong, W. Wavelet-Based Pavement Distress Image Edge Detection with À Trous Algorithm. Transp. Res. Rec. 2007, 2024, 73–81. [Google Scholar] [CrossRef]
- Ayenu-Prah, A.; Attoh-Okine, N. Evaluating Pavement Cracks with Bidimensional Empirical Mode Decomposition. EURASIP J. Adv. Signal Process. 2008, 2008, 861701. [Google Scholar] [CrossRef]
- Qingbo, Z. Pavement Crack Detection Algorithm Based on Image Processing Analysis. In Proceedings of the 2016 8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, 27–28 August 2016; pp. 15–18. [Google Scholar]
- Nguyen, D.-C.; Nguyen, T.-Q.; Jin, R.; Jeon, C.-H.; Shim, C.-S. BIM-based mixed-reality application for bridge inspection and maintenance. Constr. Innov. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Rokhsaritalemi, S.; Sadeghi-Niaraki, A.; Choi, S.-M. A Review on Mixed Reality: Current Trends, Challenges and Prospects. Appl. Sci. 2020, 10, 636. [Google Scholar] [CrossRef]
- Hönig, W.; Milanes, C.; Scaria, L.; Phan, T.; Bolas, M.; Ayanian, N. Mixed reality for robotics. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 5382–5387. [Google Scholar]
- Azuma, R.; Baillot, Y.; Behringer, R.; Feiner, S.; Julier, S.; MacIntyre, B. Recent advances in augmented reality. IEEE Comput. Graph. Appl. 2001, 21, 34–47. [Google Scholar] [CrossRef]
- Intel. VR vs. AR vs. MR: What You Need to Know. Available online: https://www.intel.com/content/www/us/en/tech-tips-and-tricks/virtual-reality-vs-augmented-reality.html (accessed on 29 October 2024).
- Milgram, P.; Kishino, F. A Taxonomy of Mixed Reality Visual Displays. IEICE Trans. Inf. Syst. 1994, E77-D, 1321–1329. [Google Scholar]
- Speicher, M.; Hall, B.; Nebeling, M. What is Mixed Reality? In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019. [Google Scholar]
- Microsoft. What Is Mixed Reality? Available online: https://learn.microsoft.com/en-us/windows/mixed-reality/discover/mixed-reality (accessed on 30 October 2024).
- Kamat Vineet, R.; El-Tawil, S. Evaluation of Augmented Reality for Rapid Assessment of Earthquake-Induced Building Damage. J. Comput. Civ. Eng. 2007, 21, 303–310. [Google Scholar] [CrossRef]
- Behzadan Amir, H.; Kamat Vineet, R. Georeferenced Registration of Construction Graphics in Mobile Outdoor Augmented Reality. J. Comput. Civ. Eng. 2007, 21, 247–258. [Google Scholar] [CrossRef]
- Bae, H.; Golparvar-Fard, M.; White, J. High-precision vision-based mobile augmented reality system for context-aware architectural, engineering, construction and facility management (AEC/FM) applications. Vis. Eng. 2013, 1, 3. [Google Scholar] [CrossRef]
- Moreu, F.; Bleck, B.; Vemuganti, S.; Rogers, D.; Mascarenas, D. Augmented Reality Tools for Enhanced Structural Inspection. 2017. Available online: https://www.researchgate.net/publication/322847804_Augmented_Reality_Tools_for_Enhanced_Structural_Inspection (accessed on 30 October 2024).
- Baek, F.; Ha, I.; Kim, H. Augmented reality system for facility management using image-based indoor localization. Autom. Constr. 2019, 99, 18–26. [Google Scholar] [CrossRef]
- Park, C.-S.; Lee, D.-Y.; Kwon, O.-S.; Wang, X. A framework for proactive construction defect management using BIM, augmented reality and ontology-based data collection template. Autom. Constr. 2013, 33, 61–71. [Google Scholar] [CrossRef]
- Dang, N.; Shim, C. BIM-based innovative bridge maintenance system using augmented reality technology. In CIGOS 2019, Innovation for Sustainable Infrastructure; Springer: Singapore, 2020; pp. 1217–1222. [Google Scholar]
- Kilic, G.; Caner, A. Augmented reality for bridge condition assessment using advanced non-destructive techniques. Struct. Infrastruct. Eng. 2021, 17, 977–989. [Google Scholar] [CrossRef]
- Hussain, M. Yolov5, yolov8 and yolov10: The go-to detectors for real-time vision. arXiv 2024, arXiv:2407.02988. [Google Scholar]
- Karimi, N.; Mishra, M.; Lourenço, P.B. Automated Surface Crack Detection in Historical Constructions with Various Materials Using Deep Learning-Based YOLO Network. Int. J. Archit. Herit. 2024, 1–17. [Google Scholar] [CrossRef]
- Xing, Y.; Han, X.; Pan, X.; An, D.; Liu, W.; Bai, Y. EMG-YOLO: Road crack detection algorithm for edge computing devices. Front. Neurorobotics 2024, 18, 1423738. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lu, Y.; Huo, Z.; Li, J.; Sun, Y.; Huang, H. USSC-YOLO: Enhanced Multi-Scale Road Crack Object Detection Algorithm for UAV Image. Sensor 2024, 24, 5586. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Li, Z.; He, Z.; Wang, L.; Cao, S.; Du, W. Road surface crack detection method based on improved YOLOv5 and vehicle-mounted images. Measurement 2024, 229, 114443. [Google Scholar] [CrossRef]
- Liao, D.; Cui, Z.; Zhang, X.; Li, J.; Li, W.; Zhu, Z.; Wu, N. Surface defect detection and classification of Si3N4 turbine blades based on convolutional neural network and YOLOv5. Adv. Mech. Eng. 2022, 14, 16878132221081580. [Google Scholar] [CrossRef]
- Li, S.; Wang, X. YOLOv5-based Defect Detection Model for Hot Rolled Strip Steel. J. Phys. Conf. Ser. 2022, 2171, 012040. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, X.; Zhou, Y.; Sun, Q.; Ge, Z.; Liu, D. Real-time detection of particleboard surface defects based on improved YOLOV5 target detection. Sci. Rep. 2021, 11, 21777. [Google Scholar] [CrossRef]
- Sobel, I. Neighborhood coding of binary images for fast contour following and general binary array processing. Comput. Graph. Image Process. 1978, 8, 127–135. [Google Scholar] [CrossRef]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. [Google Scholar] [CrossRef]
- Hoang, N.-D.; Quoc-Lam, N.; Van-Duc, T. Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network. Autom. Constr. 2018, 94, 203–213. [Google Scholar] [CrossRef]
- Prewitt, J.M. Object enhancement and extraction. Pict. Process. Psychopictorics 1970, 10, 15–19. [Google Scholar]
- PyTorch. Available online: https://pytorch.org/ (accessed on 30 June 2022).
- Unity. Unity Real-Time Development Platform. Available online: https://unity.com/ (accessed on 30 June 2022).
- Bianchi, E.; Hebdon, M. Concrete Crack Conglomerate Dataset; University Libraries, Virginia Tech: Blacksburg, VA, USA, 2021. [Google Scholar] [CrossRef]
- Maguire, M.; Dorafshan, S.; Thomas, R.J. SDNET2018: A Concrete Crack Image Dataset for Machine Learning Applications; Utah State University: Logan, UT, USA, 2018. [Google Scholar] [CrossRef]
- Safdar, M.F.; Alkobaisi, S.S.; Zahra, F.T. A Comparative Analysis of Data Augmentation Approaches for Magnetic Resonance Imaging (MRI) Scan Images of Brain Tumor. Acta Inf. Med. 2020, 28, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.-E.; Chung, K.-Y. Detection Model of Occluded Object Based on YOLO Using Hard-Example Mining and Augmentation Policy Optimization. Appl. Sci. 2021, 11, 7093. [Google Scholar] [CrossRef]
- Abdulghani, A.M.; Abdulghani, M.M.; Walters, W.L.; Abed, K.H. Data Augmentation Using Brightness and Darkness to Enhance the Performance of YOLO7 Object Detection Algorithm. In Proceedings of the 2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE), Las Vegas, NV, USA, 24–27 July 2023; pp. 351–356. [Google Scholar]
- Zhang, W.; Kinoshita, Y.; Kiya, H. Image-Enhancement-Based Data Augmentation for Improving Deep Learning in Image Classification Problem. In Proceedings of the 2020 IEEE International Conference on Consumer Electronics—Taiwan (ICCE-Taiwan), Taoyuan, Taiwan, 28–30 September 2020; pp. 1–2. [Google Scholar]
- Abdulghani, A.M.; Abdulghani, M.M.; Walters, W.L.; Abed, K.H. Data Augmentation with Noise and Blur to Enhance the Performance of YOLO7 Object Detection Algorithm. In Proceedings of the 2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE), Las Vegas, NV, USA, 24–27 July 2023; pp. 180–185. [Google Scholar]
- Liu, J.; Yang, X.; Lau, S.; Wang, X.; Luo, S.; Lee, V.C.-S.; Ding, L. Automated pavement crack detection and segmentation based on two-step convolutional neural network. Comput. -Aided Civ. Infrastruct. Eng. 2020, 35, 1291–1305. [Google Scholar] [CrossRef]
- Özgenel, Ç.F. Concrete Crack Segmentation Dataset; 2019. Mendeley Data, V1. Available online: https://data.mendeley.com/datasets/jwsn7tfbrp/1 (accessed on 8 October 2024).
- Tan, Y.; Cai, R.; Li, J.; Chen, P.; Wang, M. Automatic detection of sewer defects based on improved you only look once algorithm. Autom. Constr. 2021, 131, 103912. [Google Scholar] [CrossRef]
- Cement Concrete and Aggregates Australia. Guide-to-Concrete-Construction. 2020. Available online: https://ccaa.com.au/common/Uploaded%20files/CCAA/Publications/Technical%20Publications/Complete_Guide_to_Concrete_Construction_2020_Edition.pdf (accessed on 30 October 2024).
- Microsoft. HoloLens 2. Available online: https://www.microsoft.com/en-us/hololens/hardware (accessed on 16 June 2022).
Source | Aim | Tools and Models |
---|---|---|
[87] | Presenting a framework for proactive construction defect management. | Integration of AR, BIM, and ontology-based data collection template. |
[26] | MR for smart assessment of bridge cracks. | HoloLens and SSD for crack detection and SegNet for crack segmentation. |
[30] | Detection of cracks in concrete structures through MR. | HoloLens and computer vison (feature extraction of matching). |
[27] | Real-time automated damage detection using AR smart glasses. | Hands-free Epson BT-300 smart glasses and SSD MobileNet clustering for crack detection and Mask RCNN for segmentation. |
[88] | Presenting an innovative bridge maintenance system for storing, manipulating, and sharing inspection data and maintenance history. | HoloLens, BIM, and image processing. |
[89] | Using AR for bridge condition assessment and the detection of bridge deck delamination, crack formation, and rebar corrosion. | GPR, Laser Distance Sensors (LDSs), and Infra-Red Thermography (IRT) cameras. |
Method | mAP 0.5 | mAP 0.5 0.95 | Speed (FPS) |
---|---|---|---|
YOLO v5n | 0.927 | 0.701 | 4.5 |
YOLO v5s | 0.895 | 0.702 | 3 |
YOLO v5m | 0.890 | 0.728 | 1 |
Algorithm | Precision (P) | Recall (R) | F1 Score |
---|---|---|---|
Sobel | 0.89 | 0.70 | 0.77 |
Canny | 0.93 | 0.87 | 0.88 |
Prewitt | 0.94 | 0.55 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shojaei, D.; Jafary, P.; Zhang, Z. Mixed Reality-Based Concrete Crack Detection and Skeleton Extraction Using Deep Learning and Image Processing. Electronics 2024, 13, 4426. https://doi.org/10.3390/electronics13224426
Shojaei D, Jafary P, Zhang Z. Mixed Reality-Based Concrete Crack Detection and Skeleton Extraction Using Deep Learning and Image Processing. Electronics. 2024; 13(22):4426. https://doi.org/10.3390/electronics13224426
Chicago/Turabian StyleShojaei, Davood, Peyman Jafary, and Zezheng Zhang. 2024. "Mixed Reality-Based Concrete Crack Detection and Skeleton Extraction Using Deep Learning and Image Processing" Electronics 13, no. 22: 4426. https://doi.org/10.3390/electronics13224426
APA StyleShojaei, D., Jafary, P., & Zhang, Z. (2024). Mixed Reality-Based Concrete Crack Detection and Skeleton Extraction Using Deep Learning and Image Processing. Electronics, 13(22), 4426. https://doi.org/10.3390/electronics13224426