Triple-Stacked FET Distributed Power Amplifier Using 28 nm CMOS Process
Abstract
:1. Introduction
2. Test Pattern Measurements for the Distributed Power Amplifier Design
2.1. Active Devices
2.2. Passive Devices
3. Distributed Power Amplifier Design and Results
3.1. Theory
3.2. Design
3.3. Measured Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NETMANIAS. Current Status of Commercialization of Private 5G Frequencies in Countries Around the World [Online Article]. Available online: https://www.netmanias.com/ko/?m=view&id=oneshot&no=15510 (accessed on 12 May 2024).
- Kibaroglu, K.; Sayginer, M.; Rebeiz, G.M. A low-cost scalable 32-element 28-GHz phased array transceiver for 5G communication links based on a 2 × 2 beamformer flip-chip unit cell. IEEE J. Solid State Circuits 2018, 53, 1260–1274. [Google Scholar] [CrossRef]
- Chang, J.F.; Lin, Y.S. A 13.7-mW 21–29 GHz CMOS LNA with 21.6 dB Gain and 2.74 dB NF for 28 GHz 5G Systems. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 137–140. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Liu, Y. A Wideband Power Amplifier in 65 nm CMOS Covering 25.8 GHz–36.9 GHz by Staggering Tuned MCRs. Electronics 2023, 12, 3566. [Google Scholar] [CrossRef]
- Testolina, P.; Polese, M.; Melodia, T. Sharing Spectrum and Services in the 7–24 GHz Upper Midband. IEEE Commun. Mag. 2024, 62, 170–177. [Google Scholar] [CrossRef]
- Dasgupta, K.; Daneshgar, S.; Thakkar, C.; Jaussi, J.; Casper, B. A 26 dBm 39 GHz Power Amplifier with 26.6% PAE for 5G Applications in 28 nm Bulk CMOS. In Proceedings of the 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA, USA, 2–4 June 2019; pp. 235–238. [Google Scholar]
- Cheng, D.; Chen, Q.; Feng, J.; Chen, X.; Ma, X.; Li, L. A Compact 28/39 GHz Dual-Band Concurrent/Band-Switching LNA for 5G Multi-Band Multi-Stream Applications. In Proceedings of the 2024 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Washington, DC, USA, 16–18 June 2024; pp. 315–318. [Google Scholar]
- Elgaard, C.; Özen, M.; Westesson, E.; Mahmoud, A.; Torres, F.; Reyaz, S.B.; Forsberg, T.; Akbar, R.; Hagberg, H.; Sjöland, H. Efficient Wideband mmW Transceiver Front End for 5G Base Stations in 22-nm FD-SOI CMOS. IEEE J. Solid-State Circuits 2024, 59, 321–336. [Google Scholar] [CrossRef]
- Ellinger, F.; Claus, M.; Schröter, M.; Carta, C. Review of Advanced and Beyond CMOS FET Technologies for Radio Frequency Circuit Design. In Proceedings of the 2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011), Natal, Brazil, 29 October–1 November 2011. [Google Scholar]
- Razavi, B. Design of Analog CMOS Integrated Circuits, 2nd ed.; McGraw-Hill Education: New York, NY, USA, 2016. [Google Scholar]
- Razavi, B. RF Microelectronics; Prentice Hall: Kent, OH, USA, 1997. [Google Scholar]
- Jihoon, K.; Youngwoo, K. Low Conversion Loss 94 GHz CMOS Resistive Mixer. Electron. Lett. 2015, 51, 1464–1466. [Google Scholar]
- Jihoon, K. 86 to 94 GHz low loss CMOS balanced resistive mixer using an asymmetric broadside coupler and delay lines. Microw. Opt. Technol. Lett. 2021, 63, 133–138. [Google Scholar]
- Pozar, D. Microwave Engineering; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Taguchi, M.; Okidono, T.; Miki, T.; Nagata, M. Si Interposer with Cu TSVs on Cu Substrate Thermally and Electrically Anchoring Qubit Chips in Millikelvin Assembly. In Proceedings of the 2024 IEEE 74th Electronic Components and Technology Conference (ECTC), Denver, CO, USA, 28–31 May 2024; pp. 447–450. [Google Scholar]
- Kim, J. A wideband triple-stacked CMOS distributed power amplifier using double inductive peaking. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 787–790. [Google Scholar] [CrossRef]
- Ayasli, Y.; Mozzi, L.; Vorhous, J.L.; Reynolds, L.D.; Pucel, R.A. A Monolithic GaAs 1–13 GHz Traveling-Wave Amplifier. IEEE Trans. Microw. Theory Tech. 1982, 30, 976–981. [Google Scholar] [CrossRef]
- Cadence Design Systems. Technical Brief. EM Analysis: Why, When, and What? Available online: https://www.cadence.com/en_US/home/resources/technical-briefs/em-analysis-tb.html (accessed on 27 October 2024).
- Zhu, J.; Wang, Y.; Zhao, K.; Wang, Y.; Fu, C.; Man, K. Assessment of Measurement Uncertainty for S-Parameter Measurement Based on Covariance Matrix. Sensors 2024, 24, 3668. [Google Scholar] [CrossRef] [PubMed]
- Fang, K.; Levy, C.S.; Buckwalter, J.F. Supply-Scaling for Efficiency Enhancement in Distributed Power Amplifiers. IEEE J. Solid-State Circuits 2016, 51, 1994–2005. [Google Scholar] [CrossRef]
- Çelik, U.; Reynaert, P. Robust, efficient distributed power amplifier achieving 96 Gbit/s with 10 dBm average output power and 3.7% PAE in 22-nm FD-SOI. IEEE J. Solid-State Circuits 2021, 56, 382–391. [Google Scholar] [CrossRef]
- El-Aassar, O.; Rebeiz, G.M. A 120-GHz bandwidth CMOS distributed power amplifier with multi-drive intra-stack coupling. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 782–785. [Google Scholar] [CrossRef]
- Chen, J.; Niknejad, A.M. Design and analysis of a stage-scaled distributed power amplifier. IEEE Trans. Microw. Theory Tech. 2011, 59, 1274–1283. [Google Scholar] [CrossRef]
- Kao, J.; Chen, P.; Huang, P.; Wang, H. A novel distributed amplifier with high gain, low noise, and high output power in 0.18-μm CMOS technology. IEEE Trans. Microw. Theory Tech. 2013, 64, 1533–1542. [Google Scholar] [CrossRef]
- Tarar, M.M.; Qayyum, S.; Ali, A.; Negra, R. Loss-Compensated Cascaded Multistage Distributed Power Amplifier in 65nm CMOS Technology. IEEE Access 2024, 12, 98917–98927. [Google Scholar] [CrossRef]
Sub-6 (GHz) | Millimeter-Wave (GHz) | |
---|---|---|
Germany | 3.4–3.7 (O 1), 3.7–3.8 (P 2) | 24.25–27.5 (P) |
Japan | 3.6–4.1, 4.5–4.6 (O), 4.6–4.9 (P) | 27.0–28.2, 29.1–29.5 (O), 28.2–29.1 (P) |
France | 3.4–3.8 (O), 2.575–2.615 (P), 3.8–4.0 (P) | 26.5–27.5 (P) |
Republic of Korea | 3.42–3.7 (O), 4.72–4.82 (P) | 26.5–28.9 (O), 28.9–29.5 (P) |
UK | 3.4–3.8 (O), 3.8–4.2 (P) | 24.25–26.5 (P) |
USA | 3.55–3.7 (P), 3.7–3.98 (O) | 24.25–25.25 (O), 27.5–28.35 (O), 37–40 (P) |
China | 2.515–2.675 (P), 3.4–3.6 (P) | - |
Reference | Technology | Frequency (GHz) | SS Gain 1 (dB) | Pout (dBm) | PAE/DE (%) | Chip Area (mm2) | FoM 3 |
---|---|---|---|---|---|---|---|
[16] | 65 nm CMOS | 0.5–38 | 11–15.7 | 12.8–21.8 | 2.0–25.2/3.3–35.3 | 3.30 | 2641.9 |
[20] | 130 nm SiGe | 14–105 | 6–12 | 4–17 | 1–12.6/2–15.1 | 1.51 | 1515.1 |
[21] | 22 nm FD SOI CMOS | 0.4–31.6 | 11.6 | 14.5–16.4 | 11–17.2/– | 1.5 | 593.7 |
[22] | 45 nm SOI PMOS | DC–120 | 16 | 17–23 | 5–19 2/6–24 | 1.32 | 21,745.1 |
[23] | 130 nm SiGe | DC–110 | 10 | 12.5–17.5 | 3–13.2 2/5–16 | 2.18 | 1184.4 |
[24] | 180 nm CMOS | DC–35 | 24 | 9–13.2 2 | – | 0.83 | – |
[25] | 65 nm CMOS | 3–53 | 9.3–21.5 | 10.95–14.93 | –/3.63–8.95 | 1.33 | 1244.3 4 |
This work | 28 nm CMOS | 1.0–50.8 | 15–22 | 11.3–20 | 1.6–14.1/2.8–18.7 | 2.25 | 3928.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Sung, Y. Triple-Stacked FET Distributed Power Amplifier Using 28 nm CMOS Process. Electronics 2024, 13, 4433. https://doi.org/10.3390/electronics13224433
Kim J, Sung Y. Triple-Stacked FET Distributed Power Amplifier Using 28 nm CMOS Process. Electronics. 2024; 13(22):4433. https://doi.org/10.3390/electronics13224433
Chicago/Turabian StyleKim, Jihoon, and Youngje Sung. 2024. "Triple-Stacked FET Distributed Power Amplifier Using 28 nm CMOS Process" Electronics 13, no. 22: 4433. https://doi.org/10.3390/electronics13224433
APA StyleKim, J., & Sung, Y. (2024). Triple-Stacked FET Distributed Power Amplifier Using 28 nm CMOS Process. Electronics, 13(22), 4433. https://doi.org/10.3390/electronics13224433