MDD-DETR: Lightweight Detection Algorithm for Printed Circuit Board Minor Defects
Abstract
:1. Introduction
2. Related Work
2.1. RT-DETR
2.2. PCB Defect Detection
3. Methodology
3.1. MDD-DETR Network Model
3.2. MDDNet
MDD Module
3.3. AIFI-HiLo
3.4. Loss Function Optimizsation
3.5. SOEP
3.5.1. SPDConv
3.5.2. CSP-OmniKernel
3.5.3. CREC Module
4. Experiments
4.1. Experimental Description
4.1.1. Experimental Environment and Parameter Settings
4.1.2. PCB Defect Image Dataset
4.1.3. Performance Evaluation and Indicators
4.2. Experimental Analysis
4.2.1. Ablation Study on MDD-DETR
4.2.2. MDDNet Analysis
4.2.3. INM-IoU Analysis
4.2.4. SOEP Analysis
4.2.5. AIFI-HiLo Analysis
4.3. Comparison of PCB Defect Detection Algorithms
4.4. Visualization Experiments
4.5. The Generalization of the Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Annaby, M.H.; Fouda, Y.M.; Rushdi, M.A. Improved Normalized Cross-Correlation for Defect Detection in Printed-Circuit Boards. IEEE Trans. Semicond. Manuf. 2019, 32, 199–211. [Google Scholar] [CrossRef]
- Tian, X.; Zhao, L.; Dong, H. Application of image processing in the detection of printed circuit board. In Proceedings of the 2014 IEEE Workshop on Electronics, Computer and Applications, Ottawa, ON, Canada, 8–9 May 2014; pp. 157–159. [Google Scholar]
- Yang, Q.; Li, Z. Software Design for PCB defects detection system based on AOI technology. Information 2011, 14, 4041. [Google Scholar]
- Ma, J.; Cheng, X. Fast segmentation algorithm of PCB image using 2D OTSU improved by adaptive genetic algorithm and integral image. J. Real-Time Image Process. 2023, 20, 10. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, S.; Chen, B.; Mei, G.; Zhang, W.; Peng, H.; Tian, G. An improved envelope spectrum via candidate fault frequency optimization-gram for bearing fault diagnosis. J. Sound Vib. 2022, 523, 116746. [Google Scholar] [CrossRef]
- Sun, X.; Wu, P.; Hoi, S.C. Face detection using deep learning: An improved faster RCNN approach. Neurocomputing 2018, 299, 42–50. [Google Scholar] [CrossRef]
- Qiao, S.; Chen, L.-C.; Yuille, A. Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 21–25 June 2021; pp. 10213–10224. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I 14. Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Redmon, J. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Zhang, S.; Chi, C.; Yao, Y.; Lei, Z.; Li, S.Z. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. Centernet: Keypoint triplets for object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October—2 November 2019. [Google Scholar]
- Yang, Z.; Liu, S.; Hu, H.; Wang, L.; Lin, S. Reppoints: Point set representation for object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October—2 November 2019. [Google Scholar]
- Ge, Z. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Hu, B.; Wang, J. Detection of PCB Surface Defects with Improved Faster-RCNN and Feature Pyramid Network. IEEE Access 2020, 8, 108335–108345. [Google Scholar] [CrossRef]
- Yuan, M.; Zhou, Y.; Ren, X.; Zhi, H.; Zhang, J.; Chen, H. YOLO-HMC: An Improved Method for PCB Surface Defect Detection. IEEE Trans. Instrum. Meas. 2024, 73, 2001611. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Li, W.; Zhang, L.; Wu, C.; Cui, Z.; Niu, C. A new lightweight deep neural network for surface scratch detection. Int. J. Adv. Manuf. Technol. 2022, 123, 1999–2015. [Google Scholar] [CrossRef] [PubMed]
- Salscheider, N.O. Featurenms: Non-maximum suppression by learning feature embeddings. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021. [Google Scholar]
- Huang, J. PCB defect detection based on an enhanced dab-deformable-DETR. In Proceedings of the Ninth International Symposium on Advances in Electrical, Electronics, and Computer Engineering (ISAEECE 2024), Changchun, China, 1–3 March 2024. [Google Scholar]
- Zhao, Y.; Lv, W.; Xu, S.; Wei, J.; Wang, G.; Dang, Q.; Liu, Y.; Chen, J. Detrs beat yolos on real-time object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 17–21 June 2024. [Google Scholar]
- Yu, C.; Chen, X. Railway rutting defects detection based on improved RT-DETR. J. Real-Time Image Process. 2024, 21, 146. [Google Scholar] [CrossRef]
- Liu, M.; Wang, H.; Du, L.; Ji, F.; Zhang, M. Bearing-DETR: A Lightweight Deep Learning Model for Bearing Defect Detection Based on RT-DETR. Sensors 2024, 24, 4262. [Google Scholar] [CrossRef] [PubMed]
- Girshick, R. Fast r-cnn. arXiv 2015, arXiv:1504.08083. [Google Scholar]
- Niu, J.; Huang, J.; Cui, L.; Zhang, B.; Zhu, A. A PCB Defect Detection Algorithm with Improved Faster R-CNN. In Proceedings of the ICBASE, Online, 21–23 October 2022. [Google Scholar]
- Zeng, N.; Wu, P.; Wang, Z.; Li, H.; Liu, W.; Liu, X. A Small-Sized Object Detection Oriented Multi-Scale Feature Fusion Approach with Application to Defect Detection. IEEE Trans. Instrum. Meas. 2022, 71, 3507014. [Google Scholar] [CrossRef]
- Tang, J.; Liu, S.; Zhao, D.; Tang, L.; Zou, W.; Zheng, B. PCB-YOLO: An Improved Detection Algorithm of PCB Surface Defects Based on YOLOv5. Sustainability 2023, 15, 5963. [Google Scholar] [CrossRef]
- Liu, X.; Hu, J.; Wang, H.; Zhang, Z.; Lu, X.; Sheng, C.; Song, S.; Nie, J. Gaussian-IoU loss: Better learning for bounding box regression on PCB component detection. Expert Syst. Appl. 2022, 190, 116178. [Google Scholar] [CrossRef]
- Lan, H.; Zhu, H.; Luo, R.; Ren, Q.; Chen, C. PCB defect detection algorithm of improved YOLOv8. In Proceedings of the 2023 8th International Conference on Image, Vision and Computing (ICIVC), Dalian, China, 27–29 July 2023. [Google Scholar]
- Ling, Q.; Isa, N.A.M.; Asaari, M.S.M. SDD-Net: Soldering defect detection network for printed circuit boards. Neurocomputing 2024, 610, 128575. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, J.; Chen, J.; Wen, Z.; Zhou, X. LDD-Net: Lightweight printed circuit board defect detection network fusing multi-scale features. Eng. Appl. Artif. Intell. 2024, 129, 107628. [Google Scholar] [CrossRef]
- Ouyang, D.; He, S.; Zhang, G.; Luo, M.; Guo, H.; Zhan, J.; Huang, Z. Efficient multi-scale attention module with cross-spatial learning. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023. [Google Scholar]
- Pan, Z.; Cai, J.; Zhuang, B. Fast vision transformers with hilo attention. Adv. Neural Inf. Process. Syst. 2022, 35, 14541–14554. [Google Scholar]
- Zhang, H.; Xu, C.; Zhang, S. Inner-IoU: More effective intersection over union loss with auxiliary bounding box. arXiv 2023, arXiv:2311.02877. [Google Scholar]
- Wang, J.; Xu, C.; Yang, W.; Yu, L. A normalized Gaussian Wasserstein distance for tiny object detection. arXiv 2021, arXiv:2110.13389. [Google Scholar]
- Ma, S.; Xu, Y. Mpdiou: A loss for efficient and accurate bounding box regression. arXiv 2023, arXiv:2307.07662. [Google Scholar]
- Sunkara, R.; Luo, T. No more strided convolutions or pooling: A new CNN building block for low-resolution images and small objects. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Grenoble, France, 19–23 September 2022. [Google Scholar]
- Cui, Y.; Ren, W.; Knoll, A. Omni-Kernel Network for Image Restoration. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2024. [Google Scholar]
- Liu, X.; Peng, H.; Zheng, N.; Yang, Y.; Hu, H.; Yuan, Y. Efficientvit: Memory efficient vision transformer with cascaded group attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Cai, X.; Lai, Q.; Wang, Y.; Wang, W.; Sun, Z.; Yao, Y. Poly kernel inception network for remote sensing detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 17–21 June 2024. [Google Scholar]
- Dong, X.; Bao, J.; Chen, D.; Zhang, W.; Yu, N.; Yuan, L.; Chen, D.; Guo, B. Cswin transformer: A general vision transformer backbone with cross-shaped windows. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022. [Google Scholar]
- Li, Y.; Hu, J.; Wen, Y.; Evangelidis, G.; Salahi, K.; Wang, Y.; Tulyakov, S.; Ren, J. Rethinking vision transformers for mobilenet size and speed. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023. [Google Scholar]
- Li, Y.; Li, X.; Dai, Y.; Hou, Q.; Liu, L.; Liu, Y.; Cheng, M.-M.; Yang, J. LSKNet: A Foundation Lightweight Backbone for Remote Sensing. Int. J. Comput. Vis. 2024, 1–22. [Google Scholar] [CrossRef]
- Wang, A.; Chen, H.; Lin, Z.; Han, J.; Ding, G. Repvit: Revisiting mobile cnn from vit perspective. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 17–21 June 2024. [Google Scholar]
- Fan, Q.; Huang, H.; Chen, M.; Liu, H.; He, R. Rmt: Retentive networks meet vision transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 17–21 June 2024. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021. [Google Scholar]
- Ding, X.; Zhang, Y.; Ge, Y.; Zhao, S.; Song, L.; Yue, X.; Shan, Y. UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio, Video, Point Cloud, Time-Series and Image Recognition. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Washington, DC, USA, 17–21 June 2024. [Google Scholar]
- Chen, H.; Wang, Y.; Guo, J.; Tao, D. Vanillanet: The power of minimalism in deep learning. Adv. Neural Inf. Process. Syst. 2024, 36. [Google Scholar] [CrossRef]
- Gevorgyan, Z. SIoU loss: More powerful learning for bounding box regression. arXiv 2022, arXiv:2205.12740. [Google Scholar]
- Zhang, H.; Zhang, S. Shape-iou: More accurate metric considering bounding box shape and scale. arXiv 2023, arXiv:2312.17663. [Google Scholar]
- Tang, F.; Xu, Z.; Huang, Q.; Wang, J.; Hou, X.; Su, J.; Liu, J. DuAT: Dual-aggregation transformer network for medical image segmentation. In Proceedings of the Chinese Conference on Pattern Recognition and Computer Vision (PRCV), Xiamen, China, 13–15 October 2023. [Google Scholar]
- Voita, E.; Talbot, D.; Moiseev, F.; Sennrich, R.; Titov, I. Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019. [Google Scholar]
- Xia, Z.; Pan, X.; Song, S.; Li, L.E.; Huang, G. Vision transformer with deformable attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022. [Google Scholar]
- Shaker, A.; Maaz, M.; Rasheed, H.; Khan, S.; Yang, M.-H.; Khan, F.S. SwiftFormer: Efficient Additive Attention for Transformer-based Real-time Mobile Vision Applications. In Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France, 2–6 October 2023. [Google Scholar]
- Wu, H.; Huang, P.; Zhang, M.; Tang, W.; Yu, X. CMTFNet: CNN and Multiscale Transformer Fusion Network for Remote-Sensing Image Semantic Segmentation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 2004612. [Google Scholar] [CrossRef]
- Sun, S.; Ren, W.; Gao, X.; Wang, R.; Cao, X. Restoring images in adverse weather conditions via histogram transformer. In Proceedings of the European Conference on Computer Vision, London, UK, 15–16 January 2025. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In Proceedings of the European Conference on Computer Vision, Online, 23–28 August 2020. [Google Scholar]
- Wang, C.-Y.; Yeh, I.-H.; Liao, H.-Y.M. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. In Proceedings of the European Conference on Computer Vision, Milan, Italy, 29 September–4 October 2024. [Google Scholar]
- Qin, D.; Leichner, C.; Delakis, M.; Fornoni, M.; Luo, S.; Yang, F.; Wang, W.; Banbury, C.; Ye, C.; Akin, B. MobileNetV4-Universal Models for the Mobile Ecosystem. arXiv 2024, arXiv:2404.10518. [Google Scholar]
- Ngiam, J.; Caine, B.; Han, W.; Yang, B.; Chai, Y.; Sun, P.; Zhou, Y.; Yi, X.; Alsharif, O.; Nguyen, P. Starnet: Targeted computation for object detection in point clouds. arXiv 2019, arXiv:1908.11069. [Google Scholar]
- Rezazadeh, N.; Perfetto, D.; Polverino, A.; De Luca, A.; Lamanna, G. Guided wave-driven machine learning for damage classification with limited dataset in aluminum panel. Struct. Health Monit. 2024, 14759217241268394. [Google Scholar] [CrossRef]
Configure | Setting |
---|---|
CPU | i7-10700F 2.90GHz |
GPU | NVIDIA GeForce RTX 4090 |
Operating systems | Windows 11 |
Deployment environment | Python 3.10.11 |
Deep learning framework | PyTorch 2.0.0 |
Accelerated computing framework | CUDA 11.7 |
Optimizer | SGD |
Parameters | Setting |
---|---|
Input image size | 640 × 640 |
Epoch | 300 |
Parameter learning rate | 0.001 (First 200epoch), 0.0001 (Post 100epoch) |
Batch size | 8 |
Defect Type | Example of Defects | Number of Original Images | Number of Images After Expansion |
---|---|---|---|
missing_hole | 115 | 1495 | |
spurious_copper | 116 | 1508 | |
short | 116 | 1508 | |
mouse_bite | 115 | 1495 | |
open_circuit | 116 | 1508 | |
spur | 115 | 1495 | |
Total number | - | 693 | 9009 |
SOEP | INM-IoU | MDDNet | AIFI-HiLo | Params | FLOPs | F1 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
98.2 | 88.4 | 97.3 | 94.3 | 90.2 | 19.8 M | 57.3 G | 93.0 | ||||
√ | 98.6 | 89.8 | 98.5 | 97.5 | 94.7 | 20.1 M | 58.2 G | 94.0 | |||
√ | √ | 98.8 | 96.2 | 99.0 | 98.8 | 95.3 | 20.1 M | 58.2 G | 97.5 | ||
√ | √ | √ | 99.3 | 97.0 | 99.1 | 99.2 | 96.6 | 14.8 M | 38.6 G | 98.1 | |
√ | √ | √ | √ | 99.9 | 97.9 | 99.3 | 99.3 | 98.2 | 13.4 M | 36.4 G | 98.9 |
Backbone | Params | FLOPs | |||||
---|---|---|---|---|---|---|---|
ResNet18 [41] | 98.2 | 88.4 | 97.3 | 94.3 | 90.2 | 19.8 M | 57.0 G |
PKINet [42] | 97.5 | 86.8 | 96.6 | 93.1 | 84.5 | 12.8 M | 45.4 G |
CSwinTramsformer [43] | 96.2 | 86.3 | 95.8 | 91.6 | 82.6 | 30.5 M | 90.2 G |
EfficientFormerv2 [44] | 98.2 | 89.1 | 97.5 | 93.9 | 89.8 | 11.9 M | 29.8 G |
EfficientViT [40] | 98.2 | 89.2 | 97.5 | 94.5 | 90.4 | 10.8 M | 27.6 G |
LSKNet [45] | 97.9 | 85.7 | 96.8 | 93.5 | 81.7 | 12.6 M | 37.9 G |
RepViT [46] | 97.5 | 89.5 | 97.3 | 94.5 | 88.7 | 13.4 M | 36.7 G |
RMT [47] | 98.4 | 91.5 | 97.6 | 94.9 | 91.8 | 21.4 M | 61.5 G |
SwinTransformer [48] | 97.3 | 86.5 | 96.5 | 93.1 | 81.6 | 36.4 M | 97.3 G |
UniRepLKNet [49] | 97.8 | 86.8 | 96.7 | 93.8 | 86.5 | 12.8 M | 33.7 G |
VanillaNet [50] | 96.8 | 85.9 | 96.1 | 89.8 | 80.6 | 21.8 M | 110.5 G |
MDDNet (without EMA) | 98.6 | 92.2 | 97.8 | 98.2 | 96.2 | 14.1 M | 37.2 G |
MDDNet | 98.9 | 94.3 | 98.2 | 98.8 | 96.4 | 14.5 M | 37.9 G |
Model | Loss | |||
---|---|---|---|---|
RT-DETR | GIoU | 98.2 | 88.4 | 97.3 |
CIoU | 97.6 | 86.5 | 97.1 | |
SIoU [51] | 97.5 | 86.2 | 96.9 | |
Shape-IoU [52] | 97.1 | 87.9 | 96.9 | |
MPDIoU | 98.8 | 91.5 | 97.6 | |
inner-IoU | 98.6 | 91.2 | 97.4 | |
NWD | 99.0 | 92.8 | 97.6 | |
MPDIoU + inner-IoU | 99.0 | 94.3 | 97.7 | |
INM-IoU | 99.1 | 94.8 | 97.9 |
Model | Neck | Params | FLOPs | Epochs | |
---|---|---|---|---|---|
MDD-DETR | CCFM | 98.8 | 13.1 M | 35.5 G | 300 |
BiFPN | 99.1 | 13.7 M | 42.6 G | 300 | |
PAFPN | 98.7 | 13.1 M | 35.4 G | 300 | |
GLSA [53] | 99.0 | 15.3 M | 42.5 G | 300 | |
SOEP | 99.3 | 13.4 M | 36.4 G | 300 | |
YOLOv8n | PAFPN | 94.3 | 3.1 M | 8.7 G | 300 |
SOEP | 94.7 | 3.4 M | 9.7 G | 200 | |
YOLOv10n | PAFPN | 95.3 | 2.3 M | 6.7 G | 200 |
SOEP | 95.4 | 2.7 M | 8.2 G | 150 |
Model | Attention | |||
---|---|---|---|---|
RT-DETR | MHSA | 98.2 | 88.4 | 97.3 |
CGA | 98.5 | 89.9 | 97.6 | |
DAttention | 97.4 | 84.7 | 96.8 | |
EAA | 96.5 | 81.9 | 95.9 | |
M2SA | 98.9 | 91.8 | 98.2 | |
DHSA | 98.9 | 91.5 | 98.2 | |
HiLo | 99.3 | 94.2 | 98.9 |
Model | Params | FLOPs | FPS (bs = 8) | |||
---|---|---|---|---|---|---|
SSD | 64.5 | 43.2 | 35.4 | 150.2 M | 320.5 G | 81 |
Faster-RCNN | 72.2 | 57.8 | 50.6 | 40.6 M | 89.2 G | 168 |
YOLOv3-tiny | 91.5 | 82.5 | 75.6 | 12.1 M | 24.9 G | 179 |
YOLOv8n | 94.3 | 91.2 | 86.4 | 3.1 M | 8.7 G | 188 |
DETR | 93.8 | 88.7 | 84.6 | 41.6 M | 100.5 G | 148 |
YOLOv9s | 94.3 | 88.6 | 83.8 | 7.2 M | 26.7 G | 186 |
Gold-YOLOn | 95.2 | 92.1 | 89.5 | 5.6 M | 12.1 G | 190 |
YOLOv10n | 95.3 | 93.5 | 89.2 | 2.3 M | 6.7 G | 189 |
RT-DETR-MobileNetV4 | 97.1 | 96.2 | 93.5 | 11.4 M | 48.8 G | 201 |
RT-DETR-StarNet | 97.2 | 96.4 | 93.1 | 11.5 M | 48.5 G | 205 |
YOLOv8s | 94.3 | 91.1 | 86.4 | 11.2 M | 28.6 G | 184 |
YOLOv9m | 97.1 | 93.5 | 90.8 | 20.1 M | 76.8 G | 172 |
Gold-YOLOs | 95.9 | 92.8 | 88.5 | 21.5 M | 46.1 G | 175 |
YOLOv10m | 97.2 | 94.1 | 91.8 | 15.4 M | 59.1 G | 186 |
MDD-DETR | 99.3 | 99.3 | 98.2 | 13.4 M | 36.4 G | 198 |
Dataset | Model | |||
---|---|---|---|---|
Ceramic Tiles | RT-DETR | 72.8 | 68.6 | 72.5 |
MDD-DETR | 80.6 | 73.8 | 77.9 | |
NEU-DET | RT-DETR | 76.8 | 72.7 | 75.6 |
MDD-DETR | 83.3 | 77.8 | 81.7 | |
Aluminum Product | RT-DETR | 90.2 | 84.2 | 89.5 |
MDD-DETR | 90.9 | 84.6 | 90.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.; Fan, W.; Lan, S.; Wang, D. MDD-DETR: Lightweight Detection Algorithm for Printed Circuit Board Minor Defects. Electronics 2024, 13, 4453. https://doi.org/10.3390/electronics13224453
Peng J, Fan W, Lan S, Wang D. MDD-DETR: Lightweight Detection Algorithm for Printed Circuit Board Minor Defects. Electronics. 2024; 13(22):4453. https://doi.org/10.3390/electronics13224453
Chicago/Turabian StylePeng, Jinmin, Weipeng Fan, Song Lan, and Dingran Wang. 2024. "MDD-DETR: Lightweight Detection Algorithm for Printed Circuit Board Minor Defects" Electronics 13, no. 22: 4453. https://doi.org/10.3390/electronics13224453
APA StylePeng, J., Fan, W., Lan, S., & Wang, D. (2024). MDD-DETR: Lightweight Detection Algorithm for Printed Circuit Board Minor Defects. Electronics, 13(22), 4453. https://doi.org/10.3390/electronics13224453