Clean Collector Algorithm for Satellite Image Pre-Processing of SAR-to-EO Translation
Abstract
:1. Introduction
2. Methodology
2.1. QA60, Outlier
2.2. Missing, Night-Time
2.3. Fréchet Inception Distance
Algorithm 1 Python Implementation of CCA |
# M_QA : QA60 band mask # D_cloud : Cloud subset of 1000 images # FID : Functions to calculate the FID score per-image stage1_2_list = [] # Passed through stages 1,2 set stage3_list = [] # Passed through stage 3 set for img, M_QA in D: # Stage 1: QA60 & Outlier remove if (1 in M_QA) or (img > alpha): continue # Stage 2: Missing & Night-time remove img = normalize(img) # [0,255] img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) brightness = np.mean(img_hsv[:,:,2]) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) threshold = img.shape[0] ∗ img.shape[1] ∗ 0.3 missing_num = len(img_gray[img_gray<=10]) if (30 > brightness) or (missing_num > threshold): continue stage1_2_list.append(img) # Stage 3: Frechet inception distance remove S = FID(np.array(stage1_2_list), D_cloud) S_min, S_max = np.min(S), np.max(S) F_th = S_min + (S_max − S_min) ∗ beta # Equation~(1) for img, score in zip(stage1_2_list, S): if score > F_th: stage3_list.append(img) |
3. Experiments
3.1. Dataset
- MultiEarth 2023 The MultiEarth 2023 dataset is a collection of remote sensing data with sentinel-1 and 2 bands, containing 780,706 and 5,241,119 images respectively, all in 256 × 256 size. It focuses on Earth ecosystem analysis through challenges like that of the Amazon rainforest, which contains lots of clouds.
- SEN12MS-CR-TS The SEN12MS-CR-TS dataset is a multi-modal and multi-temporal dataset designed for global and all-season cloud removal techniques. It consists of 53 diverse regions of interest, each covering about 40 × 40 km2. The dataset includes over 700 patches per region, with a patch size of 256 × 256.
- Scotland&India The Scotland&India dataset consist of 444 samples and all in 256 × 256 size. The data include clear sky images from 2019 and cloudy images from 2020.
3.2. Baseline Selection
- pix2pix pix2pix proposes a conditional generative adversarial network (cGAN) for image-to-image translation. The model can perform various image translation tasks in a single unified framework and has become the basis for various GAN-based models.
- pix2pixHD pix2pixHD is an extended version of pix2pix and proposes a model that enables high-resolution image-to-image translation. It is designed to generate high-resolution images (2048 × 1024 resolution) that the existing pix2pix model has difficulty processing, making it very useful for realistic image generation and complex scene processing.
- SPADE Spatially-adaptive Denormalization (SPADE) is a GAN-based model designed to generate high-resolution images for tasks like image synthesis and transformation. It excels at producing realistic images from semantic layouts (segmentation maps) and effectively overcomes the limitations of previous GAN-based models.
3.3. Implementation Details and Metrics
3.4. Quantitative Results
3.5. Ablation Study
3.6. Qualitative Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Búrquez, A.; Ochoa, M.B.; Martínez-Yrízar, A.; de Souza, J.O.P. Human-made small reservoirs alter dryland hydrological connectivity. Sci. Total Environ. 2024, 947, 174673. [Google Scholar] [CrossRef]
- Paheding, S.; Saleem, A.; Siddiqui, M.F.H.; Rawashdeh, N.; Essa, A.; Reyes, A.A. Advancing horizons in remote sensing: A comprehensive survey of deep learning models and applications in image classification and beyond. Neural Comput. Appl. 2024, 36, 16727–16767. [Google Scholar] [CrossRef]
- Wu, J.; Huang, X.; Xu, N.; Zhu, Q.; Zorn, C.; Guo, W.; Wang, J.; Wang, B.; Shao, S.; Yu, C. Combining Satellite Imagery and a Deep Learning Algorithm to Retrieve the Water Levels of Small Reservoirs. Remote Sens. 2023, 15, 5740. [Google Scholar] [CrossRef]
- Adegun, A.A.; Viriri, S.; Tapamo, J.R. Review of deep learning methods for remote sensing satellite images classification. J. Big Data 2023, 10, 93. [Google Scholar] [CrossRef]
- Xu, D.; Wu, Y. An Efficient Detector with Auxiliary Network for Remote Sensing Object Detection. Electronics 2023, 12, 4448. [Google Scholar] [CrossRef]
- Kanagavelu, R.; Dua, K.; Garai, P.; Thomas, N.; Elias, S.; Elias, S.; Wei, Q.; Yong, L.; Rick, G.S.M. Federated unet model with knowledge distillation for land use classification from satellite and street views. Electronics 2023, 12, 896. [Google Scholar] [CrossRef]
- Song, J.; Li, J.; Chen, H.; Wu, J. RSMT: A remote sensing image-to-map translation model via adversarial deep transfer learning. Remote Sens. 2022, 14, 919. [Google Scholar] [CrossRef]
- Park, T.; Liu, M.Y.; Wang, T.C.; Zhu, J.Y. Semantic Image Synthesis with Spatially-Adaptive Normalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2337–2346. [Google Scholar]
- Liu, G.H.; Vahdat, A.; Huang, D.A.; Theodorou, E.A.; Nie, W.; An kumar, A. I2SB: Image-to-Image Schrödinger Bridge. Mach. Learn. Res. 2023, 202, 22042–22062. [Google Scholar]
- Li, B.; Xue, K.; Liu, B.; Lai, Y.K. BBDM: Image-to-image translation with Brownian bridge diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 1952–1961. [Google Scholar]
- Li, S.; Cheng, M.M.; Gall, J. Dual Pyramid Generative Adversarial Networks for Semantic Image Synthesis. arXiv 2022, arXiv:2210.04085. [Google Scholar]
- Wang, T.C.; Liu, M.Y.; Zhu, J.Y.; Tao, A.; Kautz, J.; Catanzaro, B. High-resolution image synthesis and semantic manipulation with conditional gans. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 8798–8807. [Google Scholar]
- Wang, P.; Bayram, B.; Sertel, E. A comprehensive review on deep learning based remote sensing image super-resolution methods. Earth-Sci. Rev. 2022, 232, 104110. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, L.; An, Q.; Zhou, Q.; Hong, H. Learning a contrast enhancer for intensity correction of remotely sensed images. IEEE Signal Process. Lett. 2021, 29, 394–398. [Google Scholar] [CrossRef]
- Pan, X.; Xie, F.; Jiang, Z.; Yin, J. Haze removal for a single remote sensing image based on deformed haze imaging model. IEEE Signal Process. Lett. 2021, 22, 1806–1810. [Google Scholar] [CrossRef]
- Noh, H.; Ju, J.; Seo, M.; Park, J.; Choi, D.G. Unsupervised change detection based on image reconstruction loss. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 1352–1361. [Google Scholar]
- Noh, H.; Ju, J.; Kim, Y.; Kim, M.; Choi, D.G. Unsupervised change detection based on image reconstruction loss with segment anything. Remote Sens. Lett. 2024, 15, 919–929. [Google Scholar] [CrossRef]
- Seo, M.; Lee, H.; Jeon, Y.; Seo, J. Self-Pair: Synthesizing Changes from Single Source for Object Change Detection in Remote Sensing Imagery. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2023; pp. 6374–6383. [Google Scholar]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, P.; Feng, X.; Yuan, M. Separate segmentation of multi-temporal high-resolution remote sensing images for object-based change detection in urban area. Remote Sens. Environ. 2017, 201, 243–255. [Google Scholar] [CrossRef]
- Cabrera, A.; Cha, M.; Sharma, P.; Newey, M. SAR-to-EO Image Translation with Multi-Conditional Adversarial Networks. In Proceedings of the 2021 55th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 31 October–3 November 2021; pp. 1710–1714. [Google Scholar]
- Lin, F.; Chuang, Y. Interoperability study of data preprocessing for deep learning and high-resolution aerial photographs for forest and vegetation type identification. Remote Sens. 2021, 13, 4036. [Google Scholar] [CrossRef]
- Fornaro, G.; Reale, D.; Verde, S. Bridge Thermal Dilation Monitoring With Millimeter Sensitivity via Multidimensional SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2012, 10, 677–681. [Google Scholar] [CrossRef]
- Luzi, G.; Pieraccini, M.; Mecatti, D.; Noferini, L.; Macaluso, G.; Tamburini, A.; Atzeni, C. Monitoring of an Alpine Glacier by Means of Ground-Based SAR Interferometry. IEEE Geosci. Remote Sens. Lett. 2007, 4, 495–499. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Z.; Hu, Z.; Dong, Q. SAR-to-Optical Image Translation with Hierarchical Latent Features. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Wang, L.; Xu, X.; Yu, Y.; Yang, R.; Gui, R.; Xu, Z.; Pu, F. SAR-to-Optical Image Translation Using Supervised Cycle-Consistent Adversarial Networks. IEEE Access 2019, 7, 129136–129149. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Schmitt, M.; Hughes, L.H.; Qiu, C.; Zhu, X.X. SEN12MS–A Curated Dataset of Georeferenced Multi-Spectral Sentinel-1/2 Imagery for Deep Learning and Data Fusion. arXiv 2019, arXiv:1906.07789. [Google Scholar] [CrossRef]
- Schmitt, M.; Prexl, J.; Ebel, P.; Liebel, L.; Zhu, X.X. Weakly supervised semantic segmentation of satellite images for land cover mapping–challenges and opportunities. arXiv 2020, arXiv:2002.08254. [Google Scholar] [CrossRef]
- Shermeyer, J.; Hogan, D.; Brown, J.; Van Etten, A.; Weir, N.; Pacifici, F.; Hansch, R.; Bastidas, A.; Soenen, S.; Bacastow, T.; et al. SpaceNet 6: Multi-Sensor All Weather Mapping Dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 196–197. [Google Scholar]
- Singh, P.; Komodakis, N. Cloud-Gan: Cloud Removal for Sentinel-2 Imagery Using a Cyclic Consistent Generative Adversarial Networks. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1772–1775. [Google Scholar]
- Pan, H. Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv 2018, arXiv:2009.13015. [Google Scholar]
- Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.H. Restormer: Efficient transformer for high-resolution image restoration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 5728–5739. [Google Scholar]
- Sarukkai, V.; Jain, A.; Uzkent, B.; Ermon, S. Cloud Removal in Satellite Images Using Spatiotemporal Generative Networks. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020; pp. 1796–1805. [Google Scholar]
- Ebel, P.; Garnot, V.S.F.; Schmitt, M.; Wegner, J.D.; Zhu, X.X. UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical Satellite Time Series. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Vancouver, BC, Canada, 18–22 June 2023; pp. 2085–2095. [Google Scholar]
- Meraner, A.; Ebel, P.; Zhu, X.X.; Schmitt, M. Cloud Removal in Sentinel-2 Imagery Using a Deep Residual Neural Network and SAR-Optical Data Fusion. ISPRS J. Photogramm. Remote Sens. 2020, 166, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, K.; Sakurada, K.; Wang, W.; Fukui, H.; Matsuoka, M.; Nakamura, R.; Kawaguchi, N. Filmy Cloud Removal on Satellite Imagery with Multispectral Conditional Generative Adversarial Nets. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 48–56. [Google Scholar]
- Cha, M.; Angelides, G.; Hamilton, M.; Soszynski, A.; Swenson, B.; Maidel, N.; Isola, P.; Perron, T.; Freeman, B. MultiEarth 2023—Multimodal Learning for Earth and Environment Workshop and Challenge. arXiv 2023, arXiv:2306.04738. [Google Scholar]
- Ebel, P.; Xu, Y.; Schmitt, M.; Zhu, X.X. SEN12MS-CR-TS: A Remote-Sensing Data Set for Multi-modal Multi-temporal Cloud Removal. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Czerkawski, M.; Upadhyay, P.; Davison, C.; Werkmeister, A.; Cardona, J.; Atkinson, R.; Michie, C.; Andonovic, I.; Macdonald, M.; Tachtatzis, C. Deep Internal Learning for Inpainting of Cloud-Affected Regions in Satellite Imagery. Remote Sens. 2022, 14, 1342. [Google Scholar] [CrossRef]
Method | MultiEarth 2023 | SEN12MS-CR-TS | Scotland&India | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SSIM↑ | PSNR↑ | MAE↓ | MSE↓ | SSIM↑ | PSNR↑ | MAE↓ | MSE↓ | SSIM↑ | PSNR↑ | MAE↓ | MSE↓ | |
pix2pix | 0.449 | 14.814 | 0.165 | 0.040 | 0.482 | 13.232 | 0.189 | 0.054 | 0.555 | 15.803 | 0.142 | 0.034 |
pix2pixHD | 0.444 | 16.066 | 0.132 | 0.030 | 0.566 | 16.483 | 0.130 | 0.027 | 0.527 | 15.931 | 0.147 | 0.040 |
SPADE | 0.407 | 15.668 | 0.148 | 0.034 | 0.462 | 14.661 | 0.169 | 0.049 | 0.522 | 14.592 | 0.168 | 0.037 |
pix2pix + CCA | 0.593 | 19.696 | 0.086 | 0.013 | 0.539 | 14.179 | 0.165 | 0.044 | 0.700 | 18.950 | 0.105 | 0.022 |
pix2pixHD + CCA | 0.503 | 19.634 | 0.086 | 0.013 | 0.601 | 18.085 | 0.105 | 0.020 | 0.709 | 20.301 | 0.111 | 0.030 |
SPADE + CCA | 0.493 | 17.590 | 0.116 | 0.024 | 0.495 | 15.390 | 0.152 | 0.039 | 0.535 | 15.041 | 0.156 | 0.034 |
Performance Metrics | Confusion Matrix | |||||||
---|---|---|---|---|---|---|---|---|
Accuracy | Precision | Recall | F1-Score | TN | FP | FN | TP | |
Score | 0.9746 | 0.9513 | 0.7913 | 0.8639 | 19,910 | 92 | 474 | 1797 |
CCA | MultiEarth 2023 | |||
---|---|---|---|---|
SSIM↑ | PSNR↑ | MAE↓ | MSE↓ | |
- | 0.444 | 16.066 | 0.132 | 0.030 |
QA60&Outlier | 0.472 | 17.954 | 0.111 | 0.022 |
+ Missing&Night-time | 0.489 | 18.212 | 0.098 | 0.017 |
+ FID score | 0.503 (+0.059) | 19.634 (+3.568) | 0.086 (−0.046) | 0.013 (−0.017) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.-W.; Park, S.-K.; Ju, J.-G.; Noh, H.-C.; Choi, D.-G. Clean Collector Algorithm for Satellite Image Pre-Processing of SAR-to-EO Translation. Electronics 2024, 13, 4529. https://doi.org/10.3390/electronics13224529
Kim M-W, Park S-K, Ju J-G, Noh H-C, Choi D-G. Clean Collector Algorithm for Satellite Image Pre-Processing of SAR-to-EO Translation. Electronics. 2024; 13(22):4529. https://doi.org/10.3390/electronics13224529
Chicago/Turabian StyleKim, Min-Woo, Se-Kil Park, Jin-Gi Ju, Hyeon-Cheol Noh, and Dong-Geol Choi. 2024. "Clean Collector Algorithm for Satellite Image Pre-Processing of SAR-to-EO Translation" Electronics 13, no. 22: 4529. https://doi.org/10.3390/electronics13224529
APA StyleKim, M. -W., Park, S. -K., Ju, J. -G., Noh, H. -C., & Choi, D. -G. (2024). Clean Collector Algorithm for Satellite Image Pre-Processing of SAR-to-EO Translation. Electronics, 13(22), 4529. https://doi.org/10.3390/electronics13224529