MSG-YOLO: A Lightweight Detection Algorithm for Clubbing Finger Detection
Abstract
:1. Introduction
- A novel multi-scale dilated residual module (C2f_MDR) is proposed, effectively improving multi-scale feature extraction while keeping the model lightweight.
- A lightweight selective feature fusion network (SFFPN) is designed, which optimizes multi-scale feature fusion using a channel attention mechanism, enhancing detection accuracy and reducing computational complexity.
- A group normalization shared parameter detection head (GNSCD) is introduced, significantly reducing model parameters and computational complexity, thereby increasing detection efficiency.
2. Related Work
2.1. Lightweight YOLO Models
2.2. Feature Fusion Strategies
3. Method
3.1. Overall Structure of MSG-YOLO
3.2. Multi-Scale Feature Extraction Residual Network (C2f_MDR)
3.3. Selective Fusion Pyramid Network (SFFPN)
3.4. Group Normalization Shared Convolution Detection Head (GNSCD)
3.5. EMASlideLoss
4. Experimental Detail
4.1. Dataset and Preprocessing
4.2. Experimental Environment
4.3. Evaluation Metrics
4.4. Experimental Results and Analysis
4.4.1. Ablation Study
4.4.2. Comparative Experiments
4.5. Visualization Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ritter, E.; Itach, T.; Paran, D.; Gaskin, A.; Havakuk, O.; Ablin, J.N. Cardiac Sarcoma Mimicking Libman–Sacks Endocarditis in a Patient with Systemic Lupus Erythematosus (SLE): A Case Report and Literature Review. J. Clin. Med. 2024, 13, 4345. [Google Scholar] [CrossRef]
- Arshad, M.; Athar, Z.M.; Hiba, T. Current and Novel Treatment Modalities of Idiopathic Pulmonary Fibrosis. Cureus 2024, 16, e56140. [Google Scholar] [CrossRef]
- Burcovschii, S.; Aboeed, A. Nail Clubbing. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Arnal, C.; Richert, B. Examination of the nails: Main signs. Hand Surg. Rehabil. 2024, 43, 101639. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, J.D. Digital clubbing. Circulation 2013, 127, 1997–1999. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, L.A.; Freedberg, I.M.; Eisen, A.Z.; Wolff, K.; Goldsmith, L.A.; Katz, S. Fitzpatrick’s Dermatology in General Medicine; McGraw Hill Professional: New York, NY, USA, 2003. [Google Scholar]
- Azad, R.; Kazerouni, A.; Heidari, M.; Aghdam, E.K.; Molaei, A.; Jia, Y.; Jose, A.; Roy, R.; Merhof, D. Advances in medical image analysis with vision transformers: A comprehensive review. Med. Image Anal. 2024, 91, 103000. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.K.; Greenspan, H.; Davatzikos, C.; Duncan, J.S.; Van Ginneken, B.; Madabhushi, A.; Prince, J.L.; Rueckert, D.; Summers, R.M. A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises. Proc. IEEE 2021, 109, 820–838. [Google Scholar] [CrossRef] [PubMed]
- Abdulhadi, J.; Al-Dujaili, A.; Humaidi, A.J.; Fadhel, M.A.R. Human nail diseases classification based on transfer learning. ICIC Express Lett. 2021, 15, 1271–1282. [Google Scholar]
- Karunarathne, H.; Senarath, G.; Pathirana, K.; Samarawickrama, H.; Walgampaya, N. Nail Abnormalities Detection and Prediction System. In Proceedings of the 2023 5th IEEE International Conference on Advancements in Computing (ICAC), Colombo, Sri Lanka, 7–8 December 2023; pp. 394–399. [Google Scholar]
- Soğukkuyu, D.Y.C.; Ata, O. Classification of melanonychia, Beau’s lines, and nail clubbing based on nail images and transfer learning techniques. PEERJ Comput. Sci. 2023, 9, e1533. [Google Scholar] [CrossRef]
- Pathan, S.K.; Jatoth, S.; Narisetty, P.; Pulari, S.V.; Vadithya, A. Nail Insight: Enhanced Nail Image Analysis for Early Disease Detection. In Proceedings of the 2024 5th IEEE International Conference for Emerging Technology (INCET), Belgaum, Karnataka, India, 24–26 May 2024; pp. 1–9. [Google Scholar]
- Hsu, W.S.; Liu, G.T.; Chen, S.J.; Wei, S.Y.; Wang, W.H. An Automated Clubbed Fingers Detection System Based on YOLOv8 and U-Net: A Tool for Early Prediction of Lung and Cardiovascular Diseases. Diagnostics 2024, 14, 2234. [Google Scholar] [CrossRef]
- Hittawe, M.M.; Harrou, F.; Togou, M.A.; Sun, Y.; Knio, O. Time-series weather prediction in the Red sea using ensemble transformers. Appl. Soft Comput. 2024, 164, 111926. [Google Scholar] [CrossRef]
- Harrou, F.; Zeroual, A.; Hittawe, M.; Sun, Y. Chapter 6—Recurrent and convolutional neural networks for traffic management. In Road Traffic Modeling and Management; Harrou, F., Zeroual, A., Hittawe, M.M., Sun, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 197–246. [Google Scholar]
- Redmon, J. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Jocher, G. YOLOv5 by Ultralytics. Available online: https://github.com/ultralytics/yolov5 (accessed on 17 November 2024).
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976. [Google Scholar] [CrossRef]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar] [CrossRef]
- Jocher, G.; Chaurasia, A.; Qiu, J. Ultralytics YOLO. Available online: https://github.com/ultralytics/ultralytics/tree/v8.2.103 (accessed on 17 November 2024).
- Wang, C.Y.; Yeh, I.H.; Liao, H.Y.M. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. arXiv 2024, arXiv:2402.13616. [Google Scholar] [CrossRef]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. YOLOv10: Real-Time End-to-End Object Detection. arXiv 2024, arXiv:2405.14458. [Google Scholar] [CrossRef]
- Jocher, G.; Qiu, J.; Chaurasia, A. Ultralytics YOLO. Available online: https://github.com/ultralytics/ultralytics (accessed on 17 November 2024).
- Xu, S.; Wang, X.; Lv, W.; Chang, Q.; Cui, C.; Deng, K.; Wang, G.; Dang, Q.; Wei, S.; Du, Y.; et al. PP-YOLOE: An evolved version of YOLO. arXiv 2022, arXiv:2203.16250. [Google Scholar]
- Zhang, Y.; Zhang, H.; Huang, Q.; Han, Y.; Zhao, M. DsP-YOLO: An anchor-free network with DsPAN for small object detection of multiscale defects. Expert Syst. Appl. 2024, 241, 122669. [Google Scholar] [CrossRef]
- Zhou, Y. A YOLO-NL object detector for real-time detection. Expert Syst. Appl. 2024, 238, 122256. [Google Scholar] [CrossRef]
- Wang, D.; Peng, J.; Lan, S.; Fan, W. CTDD-YOLO: A Lightweight Detection Algorithm for Tiny Defects on Tile Surfaces. Electronics 2024, 13, 3931. [Google Scholar] [CrossRef]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar]
- Połap, D.; Jaszcz, A. Sonar digital twin layer via multi-attention networks with feature transfer. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4206910. [Google Scholar] [CrossRef]
- Li, H.; Zhang, R.; Pan, Y.; Ren, J.; Shen, F. Lr-fpn: Enhancing remote sensing object detection with location refined feature pyramid network. arXiv 2024, arXiv:2404.01614. [Google Scholar]
- Wu, Y.; He, K. Group Normalization. In Proceedings of the European Conference on Computer Vision (ECCV 2018), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Ioffe, S. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv 2016, arXiv:1506.01497. [Google Scholar] [CrossRef] [PubMed]
- Lyu, C.; Zhang, W.; Huang, H.; Zhou, Y.; Wang, Y.; Liu, Y.; Zhang, S.; Chen, K. Rtmdet: An empirical study of designing real-time object detectors. arXiv 2022, arXiv:2212.07784. [Google Scholar]
- Feng, C.; Zhong, Y.; Gao, Y.; Scott, M.R.; Huang, W. Tood: Task-aligned one-stage object detection. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 11–17 October 2021; IEEE Computer Society: Washington, DC, USA, 2021; pp. 3490–3499. [Google Scholar]
- Chen, Z.; Yang, C.; Li, Q.; Zhao, F.; Zha, Z.J.; Wu, F. Disentangle your dense object detector. In Proceedings of the 29th ACM International Conference on Multimedia, Virtual Event, 20–24 October 2021; pp. 4939–4948. [Google Scholar]
Parameter | Value |
---|---|
Optimizer | SGD |
Initial learning rate (lr0) | 0.01 |
Final learning rate (lrf) | 0.01 |
Weight decay | 0.0005 |
Momentum | 0.937 |
Warmup epochs | 3 |
Warmup momentum | 0.8 |
Close mosaic | 10 |
Model | C2f-MDR | SFFPN | GNSCD | EMA-SlideLoss | mAP50 | mAP50-95 | FLOPs/G | Params/M |
---|---|---|---|---|---|---|---|---|
YOLOv8n | 90.78% | 76.36% | 8.195 | 3.01 | ||||
1 | ✓ | 91.28% | 77.02% | 8.1 | 3.01 | |||
2 | ✓ | 90.56% | 75.67% | 6.946 | 1.94 | |||
3 | ✓ | 89.02% | 75.78% | 7.169 | 2.4 | |||
4 | ✓ | 90.98% | 77.96% | 8.195 | 3.01 | |||
5 | ✓ | ✓ | 91.49% | 76.58% | 6.85 | 1.93 | ||
6 | ✓ | ✓ | ✓ | 93.07% | 77.27% | 6.214 | 1.6 | |
Ours | ✓ | ✓ | ✓ | ✓ | 93.64% | 77.71% | 6.214 | 1.6 |
Model Name | [email protected] | [email protected]:0.95 | FLOPs (G) | Params (M) |
---|---|---|---|---|
Faster-Rcnn [37] | 88.20% | 64.60% | 90.903 | 41.353 |
Rtmdet-Tiny [38] | 86.10% | 68.10% | 8.026 | 4.873 |
TOOD [39] | 85.20% | 72.20% | 78.857 | 32.021 |
DDOD [40] | 87.00% | 67.70% | 71.146 | 32.199 |
YOLOv5n [20] | 87.04% | 73.96% | 7.18 | 2.51 M |
YOLOv5s [20] | 88.77% | 77.66% | 64.36 | 25.07 M |
YOLOv8n [23] | 90.78% | 76.36% | 8.20 | 3.01 M |
YOLOv8s [23] | 92.34% | 76.13% | 28.65 | 11.14 M |
YOLOv9t [24] | 91.19% | 76.37% | 11.00 | 2.66 M |
YOLOv10n [25] | 89.77% | 75.99% | 8.40 | 2.71 M |
YOLOv11n [26] | 91.63% | 75.33% | 6.4 | 2.59 M |
ours | 93.64% | 77.71% | 6.214 | 1.6 M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Meng, Q.; Tang, F.; Qi, Y.; Li, B.; Liu, X.; Kong, S.; Li, X. MSG-YOLO: A Lightweight Detection Algorithm for Clubbing Finger Detection. Electronics 2024, 13, 4549. https://doi.org/10.3390/electronics13224549
Wang Z, Meng Q, Tang F, Qi Y, Li B, Liu X, Kong S, Li X. MSG-YOLO: A Lightweight Detection Algorithm for Clubbing Finger Detection. Electronics. 2024; 13(22):4549. https://doi.org/10.3390/electronics13224549
Chicago/Turabian StyleWang, Zhijie, Qiao Meng, Feng Tang, Yuelin Qi, Bingyu Li, Xin Liu, Siyuan Kong, and Xin Li. 2024. "MSG-YOLO: A Lightweight Detection Algorithm for Clubbing Finger Detection" Electronics 13, no. 22: 4549. https://doi.org/10.3390/electronics13224549
APA StyleWang, Z., Meng, Q., Tang, F., Qi, Y., Li, B., Liu, X., Kong, S., & Li, X. (2024). MSG-YOLO: A Lightweight Detection Algorithm for Clubbing Finger Detection. Electronics, 13(22), 4549. https://doi.org/10.3390/electronics13224549