Proof-of-Concept Quantitative Monitoring of Respiration Using Low-Energy Wearable Piezoelectric Thread
Abstract
:1. Introduction
2. Sensor Preparation
2.1. Piezoelectric Thread Sensor
2.2. Airflow Sensor
3. Proof-of-Concept Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lou, Z.; Wang, L.; Jiang, K.; Wei, Z.; Shen, G. Reviews of wearable healthcare systems: Materials, devices and system integration. Mater. Sci. Eng. R. Rep. 2020, 140, 100523. [Google Scholar] [CrossRef]
- Ding, X.; Clifton, D.; Ji, N.; Lovell, N.H.; Bonato, P.; Chen, W.; Yu, X.; Xue, Z.; Xiang, T.; Long, X.; et al. Wearable Sensing and Telehealth Technology with Potential Applications in the Coronavirus Pandemic. IEEE Rev. Biomed. Eng. 2021, 14, 48–70. [Google Scholar] [CrossRef]
- Ates, H.C.; Nguyen, P.Q.; Gonzalez-Macia, L.; Morales-Narváez, E.; Güder, F.; Collins, J.J.; Dincer, C. End-to-end design of wearable sensors. Nat. Rev. Mater. 2022, 7, 887–907. [Google Scholar] [CrossRef]
- Vanegas, E.; Igual, R.; Plaza, I. Sensing Systems for Respiration Monitoring: A Technical Systematic Review. Sensors 2020, 20, 5446. [Google Scholar] [CrossRef]
- Rosso, M.; Nastro, A.; Baù, M.; Ferrari, M.; Ferrari, V.; Corigliano, A.; Ardito, R. Piezoelectric Energy Harvesting from Low-Frequency Vibrations Based on Magnetic Plucking and Indirect Impacts. Sensors 2022, 22, 5911. [Google Scholar] [CrossRef]
- Shikida, M.; Hasegawa, Y.; Al Farisi, M.S.; Matsushima, M.; Kawabe, T. Advancements in MEMS technology for medical applications: Microneedles and miniaturized sensors. Jpn. J. Appl. Phys. 2022, 61, SA0803. [Google Scholar] [CrossRef]
- Al Farisi, M.S.; Wang, Y.; Hasegawa, Y.; Matsushima, M.; Kawabe, T.; Shikida, M. Facile In-Tube-Center Packaging of Flexible Airflow Rate Microsensor for Simultaneous Respiration and Heartbeat Measurement. IEEE Sensors J. 2023, 23, 12626–12633. [Google Scholar] [CrossRef]
- Mannino, D.M.; Buist, A.S. Global burden of COPD: Risk factors, prevalence, and future trends. Lancet 2007, 370, 765–773. [Google Scholar] [CrossRef]
- Heldt, G.P.; Ward, R.J. Evaluation of Ultrasound-Based Sensor to Monitor Respiratory and Nonrespiratory Movement and Timing in Infants. IEEE Trans. Biomed. Eng. 2016, 63, 619–629. [Google Scholar] [CrossRef]
- Dinh, T.; Nguyen, T.; Phan, H.P.; Nguyen, N.T.; Dao, D.V.; Bell, J. Stretchable respiration sensors: Advanced designs and multifunctional platforms for wearable physiological monitoring. Biosens. Bioelectron. 2020, 166, 112460. [Google Scholar] [CrossRef]
- Karlen, W.; Raman, S.; Ansermino, J.M.; Dumont, G.A. Multiparameter respiratory rate estimation from the photoplethysmogram. IEEE Trans. Biomed. Eng. 2013, 60, 1946–1953. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ke, Z.; Liao, G.; Pan, X.; Yang, Y.; Xu, W. A Fast-Response Breathing Monitoring System for Human Respiration Disease Detection. IEEE Sensors J. 2022, 22, 10411–10419. [Google Scholar] [CrossRef]
- Adiono, T.; Ahmadi, N.; Saraswati, C.; Aditya, Y.; Yudhanto, Y.P.; Aziz, A.; Wulandari, L.; Maranatha, D.; Khusnurrokhman, G.; Riadi, A.R.W.; et al. Respinos: A Portable Device for Remote Vital Signs Monitoring of COVID-19 Patients. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 947–961. [Google Scholar] [CrossRef] [PubMed]
- Mahbub, I.; Pullano, S.A.; Wang, H.; Islam, S.K.; Fiorillo, A.S.; To, G.; Mahfouz, M.R. A Low-Power Wireless Piezoelectric Sensor-Based Respiration Monitoring System Realized in CMOS Process. IEEE Sensors J. 2017, 17, 1858–1864. [Google Scholar] [CrossRef]
- Ohkura, N.; Tanaka, R.; Watanabe, S.; Hara, J.; Abo, M.; Nakade, Y.; Horii, J.; Matsuura, Y.; Inoue, D.; Takata, M.; et al. Chest dynamic-ventilatory digital radiography in chronic obstructive or restrictive lung disease. Int. J. COPD 2021, 16, 1393–1399. [Google Scholar] [CrossRef] [PubMed]
- Horie, K.; Al Farisi, M.S.; Hasegawa, Y.; Matsushima, M.; Kawabe, T.; Shikida, M. Investigation of Calibration Methodology Using Mouth Airflow for Wearable Sensor Toward Quantitative Respiration Monitoring. IEEJ Trans. Electr. Electron. Eng. 2024, 19, 800–806. [Google Scholar] [CrossRef]
- Hermawan, A.; Amrillah, T.; Riapanitra, A.; Ong, W.J.; Yin, S. Prospects and Challenges of MXenes as Emerging Sensing Materials for Flexible and Wearable Breath-Based Biomarker Diagnosis. Adv. Healthc. Mater. 2021, 10, 1–27. [Google Scholar] [CrossRef]
- Jiang, T.; Deng, L.; Qiu, W.; Liang, J.; Wu, Y.; Shao, Z.; Wang, D.; Zhang, M.; Qian, X.; Zhong, J.; et al. Wearable breath monitoring via a hot-film/calorimetric airflow sensing system. Biosens. Bioelectron. 2020, 163, 112288. [Google Scholar] [CrossRef]
- Johns, D.P.; Walters, J.A.E.; Haydn Walters, E. Diagnosis and early detection of COPD using spirometry. J. Thorac. Dis. 2014, 6, 1557–1569. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, L.; Huang, Y.X. A smart phone based handheld wireless spirometer with functions and precision comparable to laboratory spirometers. Sensors 2019, 19, 2487. [Google Scholar] [CrossRef]
- Yoshida, M.; Onishi, K.; Tanimoto, K.; Nishikawa, S. Flexible tension sensor based on poly(l-lactic acid) film with coaxial structure. Jpn. J. Appl. Phys. 2017, 56, 10PG02. [Google Scholar] [CrossRef]
- Karita, M.; Kumagai, S.; Sasaki, M. Respiration monitoring during 6 min walk using wearable sensor measuring capacitance built across skin. Jpn. J. Appl. Phys. 2022, 61, SA1010. [Google Scholar] [CrossRef]
- Al Farisi, M.S.; Wang, Y.; Hasegawa, Y.; Shikida, M. Facile Packaging for Fiber-Shaped Flexible MEMS Thermal Accelerometer. IEEE Sensors Lett. 2023, 7, 2504704. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Kawaoka, H.; Mitsunari, Y.; Matsushima, M.; Kawabe, T.; Shikida, M. Catheter type thermal flow sensor with small footprint for measuring breathing function. Microsyst. Technol. 2018, 24, 3455–3465. [Google Scholar] [CrossRef]
- King, L.V. XII—On the convection of heat from small cylinders in a stream of fluid: Determination of the convection constants of small platinum wires with applications to hot-wire anemometry. Philos. Trans. R. Soc. London. Ser. A Contain. Pap. A Math. Phys. Character 1914, 214, 373–432. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horie, K.; Al Farisi, M.S.; Hasegawa, Y.; Matsushima, M.; Kawabe, T.; Shikida, M. Proof-of-Concept Quantitative Monitoring of Respiration Using Low-Energy Wearable Piezoelectric Thread. Electronics 2024, 13, 4577. https://doi.org/10.3390/electronics13234577
Horie K, Al Farisi MS, Hasegawa Y, Matsushima M, Kawabe T, Shikida M. Proof-of-Concept Quantitative Monitoring of Respiration Using Low-Energy Wearable Piezoelectric Thread. Electronics. 2024; 13(23):4577. https://doi.org/10.3390/electronics13234577
Chicago/Turabian StyleHorie, Kenta, Muhammad Salman Al Farisi, Yoshihiro Hasegawa, Miyoko Matsushima, Tsutomu Kawabe, and Mitsuhiro Shikida. 2024. "Proof-of-Concept Quantitative Monitoring of Respiration Using Low-Energy Wearable Piezoelectric Thread" Electronics 13, no. 23: 4577. https://doi.org/10.3390/electronics13234577
APA StyleHorie, K., Al Farisi, M. S., Hasegawa, Y., Matsushima, M., Kawabe, T., & Shikida, M. (2024). Proof-of-Concept Quantitative Monitoring of Respiration Using Low-Energy Wearable Piezoelectric Thread. Electronics, 13(23), 4577. https://doi.org/10.3390/electronics13234577