A Safety Helmet Detection Model Based on YOLOv8-ADSC in Complex Working Environments
Abstract
:1. Introduction
2. Methods
2.1. YOLOv8n
2.2. YOLOv8-ADSC
2.2.1. Introduce ASFF and DCNv2 to Improve the Detection Head
2.2.2. Add a New Layer for Detecting Small Targets
2.2.3. Replace the Upsample Module with the CARAFE Module
3. Experiment
3.1. Experimental Environment
3.2. Experimental Dataset
3.3. Ablation Experiment
3.4. Comparative Experiment
3.5. Visualization
3.6. Generalization Experiment
3.6.1. Generalization Experiments on the SHEL5K Dataset
3.6.2. Generalization Experiments on the VisDrone2019 Dataset
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Silva, R.R.V.E.; Aires, K.R.T.; Veras, R.D.M.S. Detection of helmets on motorcyclists. Multimed. Tools Appl. 2018, 77, 5659–5683. [Google Scholar] [CrossRef]
- Sun, X.; Xu, K.; Wang, S.; Wu, C.; Zhang, W.; Wu, H. Detection and tracking of safety helmet in factory environment. Meas. Sci. Technol. 2021, 32, 105406. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, Y.; Shi, L.; Li, N.; Zhang, L.; Xu, S. Automatic detection of safety helmet wearing based on head region location. IET Image Process. 2021, 15, 2441–2453. [Google Scholar] [CrossRef]
- Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 2020, 53, 5455–5516. [Google Scholar] [CrossRef]
- Lin, H.; Jiang, F.; Jiang, Y.; Luo, H.; Yao, J.; Liu, J. A model for Helmet-Wearing detection of Non-Motor drivers based on YOLOv5s. Comput. Mater. Contin. 2023, 75, 5321–5336. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–23 December 2015. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Lyu, Y.K.; Yang, X.; Guan, A.; Wang, J.; Dai, L. Construction personnel dress code detection based on YOLO framework. CAAI Trans. Intell. Technol. 2024, 9, 709–721. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal loss for dense object detection. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023. [Google Scholar]
- Wang, M. Research on Detection and Application of Safety Helmet Wearing Based on Deep Learning. Master’s Thesis, Anhui University of Technology, Maanshan, China, 2022. [Google Scholar]
- Huang, L.; Fu, Q.; He, M.; Jiang, D.; Hao, Z. Detection algorithm of safety helmet wearing based on deep learning. Concurr. Comput. Pract. Exp. 2021, 33, e6234. [Google Scholar] [CrossRef]
- Xu, S.; Gu, j.; Hua, Y.; Liu, Y. DKTNet: Dual-Key Transformer Network for small object detection. Neurocomputing 2023, 525, 29–41. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Yang, H. Safety helmet wearing detection model based on improved YOLO-M. IEEE Access 2023, 11, 26247–26257. [Google Scholar] [CrossRef]
- Zhao, L.; Tohti, T.; Hamdulla, A. BDC-YOLOv5: A helmet detection model employs improved YOLOv5. Signal Image Video Process. 2023, 17, 4435–4445. [Google Scholar] [CrossRef]
- Lin, B. Safety helmet detection based on improved YOLOv8. IEEE Access 2024, 12, 28260–28272. [Google Scholar] [CrossRef]
- Song, R.; Wang, Z. RBFPDet: An anchor-free helmet wearing detection method. Appl. Intell. 2023, 53, 5013–5028. [Google Scholar] [CrossRef]
- Gao, T.; Yang, J.; Wang, W.; Fan, X. A domain feature decoupling network for rotating machinery fault diagnosis under unseen operating conditions. Reliab. Eng. Syst. Saf. 2024, 252, 110449. [Google Scholar] [CrossRef]
- Gao, T.; Yang, J.; Tang, Q. A multi-source domain information fusion network for rotating machinery fault diagnosis under variable operating conditions. Inf. Fusion 2024, 106, 102278. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, G.; Wu, S.; Han, J. TCGNet: Type-Correlation Guidance for Salient Object Detection. IEEE Trans. Intell. Transp. Syst. 2024, 25, 6633–6644. [Google Scholar] [CrossRef]
- Lin, T.Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Liu, S.; Huang, D.; Wang, Y. Learning Spatial Fusion for Single-Shot Object Detection. arXiv 2019, arXiv:1911.09516. [Google Scholar]
- Zhu, X.; Hu, H.; Lin, S.; Dai, J. Deformable convnets v2: More deformable, better results. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Wang, J.; Chen, K.; Xu, R.; Liu, Z.; Loy, C.C.; Lin, D. CARAFE: Content-aware reassembly of features. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Amir, S.B.; Horio, K. YOLOv8s-NE: Enhancing Object Detection of Small Objects in Nursery Environments Based on Improved YOLOv8. Electronics 2024, 13, 3293. [Google Scholar] [CrossRef]
- SHWD: Safety-Helmet-Wearing-Dataset. Available online: https://github.com/njvisionpower/Safety-Helmet-Wearing-Dataset (accessed on 1 June 2023).
- Otgonbold, M.E.; Gochoo, M.; Alnajjar, F.; Ali, L.; Tan, T.H.; Hsieh, J.W.; Chen, P.Y. SHEL5K: An extended dataset and benchmarking for safety helmet detection. Sensors 2022, 22, 2315. [Google Scholar] [CrossRef] [PubMed]
- Du, D.; Zhu, P.; Wen, L.; Bian, X.; Ling, H.; Hu, Q.; Peng, T.; Zheng, J.; Wang, X.; Zhang, Y.; et al. VisDrone-DET2019: The vision meets drone object detection in image challenge results. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshops (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Safety-Helmet-Detection: Improve Work Safety by Detecting the Presence of People and Safety Helmets. Available online: https://www.kaggle.com/andrewmvd/hard-hat-detection (accessed on 1 June 2023).
[email protected] (%) | [email protected]:0.95 (%) | GFLOPs | ||
---|---|---|---|---|
1 | 3 | 92.8 | 60.8 | 8.2 |
3 | 5 | 93.1 | 61 | 8.4 |
5 | 7 | 93 | 60.9 | 9.4 |
Model | Precision (%) | Recall (%) | [email protected] (%) | [email protected]:0.95(%) | GFLOPs | FPS | Parameters (M) |
---|---|---|---|---|---|---|---|
YOLOv8n | 90 | 87 | 92.2 | 60.1 | 8.2 | 98 | 3.01 |
YOLOv8-AD | 90.7 | 88 | 92.8 | 61.2 | 8.6 | 78.1 | 4.69 |
YOLOv8-S | 90.1 | 87.9 | 93.1 | 60.4 | 12.2 | 80.9 | 2.92 |
YOLOv8-C | 90.9 | 87.8 | 93.1 | 61 | 8.4 | 70.4 | 3.14 |
YOLOv8-AD-S | 91.6 | 88.5 | 93.9 | 62 | 12.9 | 62.9 | 5.07 |
YOLOv8-S-C | 91.2 | 88.8 | 93.8 | 61.6 | 13.6 | 61 | 3.12 |
YOLOv8-AD-C | 90.2 | 88.9 | 93.4 | 61.7 | 9.2 | 59 | 5.26 |
YOLOv8-ADSC | 91.6 | 89 | 94.2 | 62.4 | 13.9 | 51 | 5.27 |
Model | Precision (%) | Recall (%) | [email protected] (%) | [email protected]:0.95(%) | GFLOPs | FPS | Parameters (M) |
---|---|---|---|---|---|---|---|
Faster-R-CNN(ResNet50+FPN) | 90.9 | 78.4 | 90.9 | 59.2 | 180 | 16 | 42 |
YOLOv4-tiny | 85.9 | 76.4 | 81.3 | 46.8 | 6.79 | 60.6 | 5.89 |
YOLOv5n | 90.7 | 86 | 91.3 | 57.8 | 4.1 | 96 | 1.9 |
YOLOv5s | 90.9 | 87.3 | 92.3 | 59.7 | 15.8 | 90 | 7.03 |
YOLOv7-tiny | 91.5 | 86.6 | 92.9 | 58.2 | 13 | 50.5 | 6.01 |
YOLOv8s | 90.3 | 89.5 | 93.7 | 62.2 | 28.4 | 90.9 | 11.13 |
YOLOv8n | 90 | 87 | 92.2 | 60.1 | 8.2 | 98 | 3.01 |
YOLOv10n | 89.8 | 85.9 | 91.6 | 58.4 | 8.2 | 97 | 2.7 |
YOLOv8-ADSC | 91.6 | 89 | 94.2 | 62.4 | 13.9 | 51 | 5.27 |
Model | Image Size | [email protected] (%) |
---|---|---|
RBFPDet [21] | 512 × 512 | 89.6 |
DKTNet [17] | 224 × 224 | 92.8 |
BDC-YOLOv5 [19] | 640 × 640 | 93.9 |
YOLO-M [18] | 640 × 640 | 93.87 |
YOLOv8n-SLIM-CA [20] | 640 × 640 | 93.8 |
YOLOv8-ADSC | 640 × 640 | 94.2 |
Model | Precision (%) | Recall (%) | [email protected] (%) | [email protected]:0.95 (%) | GFLOPs | FPS | Parameters (M) |
---|---|---|---|---|---|---|---|
Faster-R-CNN(ResNet50+FPN) | 88.5 | 75 | 85.5 | 53.2 | 180 | 21.3 | 42 |
YOLOv4-tiny | 81.1 | 62 | 68.3 | 41.6 | 6.79 | 59.2 | 5.89 |
YOLOv5n | 88.3 | 76.2 | 83.8 | 49.9 | 4.1 | 101.4 | 1.9 |
YOLOv5s | 88.8 | 78.5 | 85.7 | 52.5 | 15.8 | 98.5 | 7.03 |
YOLOv7-tiny | 89.7 | 81.9 | 88.5 | 52.6 | 13 | 55.4 | 6.01 |
YOLOv8s | 88.7 | 83.2 | 89.4 | 57 | 28.4 | 90.9 | 11.13 |
YOLOv8n | 88.4 | 81 | 87.4 | 55.5 | 8.2 | 111 | 3.01 |
YOLOv10n | 86.9 | 78.9 | 86.7 | 54.1 | 8.2 | 102 | 2.7 |
YOLOv8-ADSC | 89 | 82.9 | 89.2 | 56.2 | 13.9 | 63.7 | 5.27 |
Model | Precision (%) | Recall (%) | [email protected] (%) | [email protected]:0.95 (%) | GFLOPs | FPS | Parameters (M) |
---|---|---|---|---|---|---|---|
Faster-R-CNN(ResNet50+FPN) | 31.3 | 27.2 | 26.9 | 17.5 | 180 | 18 | 42 |
YOLOv4-tiny | 31.3 | 11 | 18.8 | 10.7 | 6.79 | 55.6 | 5.89 |
YOLOv5n | 36.3 | 28.8 | 26.1 | 13 | 4.1 | 59.8 | 1.9 |
YOLOv5s | 39.3 | 31.7 | 28.7 | 15.4 | 15.8 | 59.5 | 7.03 |
YOLOv7-tiny | 41.7 | 36 | 30.5 | 15.8 | 13 | 22.72 | 6.01 |
YOLOv8s | 46.5 | 35.3 | 34.1 | 19.8 | 28.4 | 66 | 11.13 |
YOLOv8n | 39.5 | 29 | 27.4 | 15.5 | 8.2 | 76 | 3.01 |
YOLOv10n | 39.8 | 30 | 27.7 | 15.5 | 8.2 | 80 | 2.7 |
YOLOv8-ADSC | 46.6 | 35.7 | 34.2 | 19.7 | 13.9 | 54.3 | 5.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Sang, B.; Zhang, B.; Liu, W. A Safety Helmet Detection Model Based on YOLOv8-ADSC in Complex Working Environments. Electronics 2024, 13, 4589. https://doi.org/10.3390/electronics13234589
Wang J, Sang B, Zhang B, Liu W. A Safety Helmet Detection Model Based on YOLOv8-ADSC in Complex Working Environments. Electronics. 2024; 13(23):4589. https://doi.org/10.3390/electronics13234589
Chicago/Turabian StyleWang, Jingyang, Bokai Sang, Bo Zhang, and Wei Liu. 2024. "A Safety Helmet Detection Model Based on YOLOv8-ADSC in Complex Working Environments" Electronics 13, no. 23: 4589. https://doi.org/10.3390/electronics13234589
APA StyleWang, J., Sang, B., Zhang, B., & Liu, W. (2024). A Safety Helmet Detection Model Based on YOLOv8-ADSC in Complex Working Environments. Electronics, 13(23), 4589. https://doi.org/10.3390/electronics13234589