A Four-Point Orientation Method for Scene-to-Model Point Cloud Registration of Engine Blades
Abstract
:1. Introduction
- Point cloud data are divided into specific blocks based on principal component analysis, and a location-label descriptor is present;
- The selection of four points over three for a keypoint base is intended to reduce the likelihood of mismatches that could occur due to the presence of similar structural features;
- A location-label descriptor that considers the location of keypoints instead of features is presented to avoid manual parameter adjustments.
2. Related Work
3. Proposed Method
3.1. Registration Problem Description
3.2. Detector and Descriptors
3.2.1. Principal Axis Extraction
3.2.2. Keypoint Detection
3.2.3. Location-Label Descriptors
Algorithm 1 Keypoints Detector and Location-label Descriptors (taking the point cloud P as an example) |
Require: The source point cloud P Ensure: The keypoints set in which every point is attached with two bool labels and
|
3.3. Pair Searching Mechanism
Algorithm 2 Pair Searching Mechanism |
Require: The keypoints set and Ensure: A pairing-base set
|
3.3.1. Block Pairing Searching
Situation | Scene Point Cloud | Model Point Cloud |
---|---|---|
1 | && | && |
2 | && | && ! |
3 | && | !&& |
4 | && | !&& ! |
3.3.2. Point Pairing Searching
3.4. Rigid Transformation Estimation
4. Experiments
4.1. Experiment Setup
4.2. Results and Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Z.; Wang, Y.; Mo, Y.; Zhu, Q.; Xie, H.; Wu, H.; Feng, M.; Mian, A. Multiview Point Cloud Registration Based on Minimum Potential Energy for Free-Form Blade Measurement. IEEE Trans. Instrum. Meas. 2022, 71, 5011014. [Google Scholar] [CrossRef]
- Diez, Y.; Roure, F.; Lladó, X.; Salvi, J. A qualitative review on 3D coarse registration methods. ACM Comput. Surv. (CSUR) 2015, 47, 1–36. [Google Scholar] [CrossRef]
- Besl, P.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Chetverikov, D.; Svirko, D.; Stepanov, D.; Krsek, P. The trimmed iterative closest point algorithm. In Proceedings of the 2002 International Conference on Pattern Recognition, Quebec City, QC, USA, 11–15 August 2002; Volume 3, pp. 545–548. [Google Scholar]
- Segal, A.; Haehnel, D.; Thrun, S. Generalized-icp. In Proceedings of the Robotics: Science and Systems, Seattle, WA, USA, 28 June–1 July 2009; Volume 2, p. 435. [Google Scholar]
- Yang, J.; Li, H.; Jia, Y. Go-icp: Solving 3d registration efficiently and globally optimally. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 1457–1464. [Google Scholar]
- Koide, K.; Yokozuka, M.; Oishi, S.; Banno, A. Voxelized gicp for fast and accurate 3d point cloud registration. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 11054–11059. [Google Scholar]
- Zhang, J.; Yao, Y.; Deng, B. Fast and robust iterative closest point. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3450–3466. [Google Scholar] [CrossRef] [PubMed]
- Wu, J. Rigid 3-D registration: A simple method free of SVD and eigendecomposition. IEEE Trans. Instrum. Meas. 2020, 69, 8288–8303. [Google Scholar]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Arena, P.; Baglio, S.; Fortuna, L.; Manganaro, G. Self-organization in a two-layer CNN. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1998, 45, 157–162. [Google Scholar] [CrossRef]
- Quan, S.; Yang, J. Compatibility-guided sampling consensus for 3-d point cloud registration. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7380–7392. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Y.; Vela, P.A.; Zhang, H.; Yuan, X.; Zhou, X. Geometric Inlier Selection for Robust Rigid Registration with Application to Blade Surfaces. IEEE Trans. Ind. Electron. 2021, 69, 9206–9215. [Google Scholar] [CrossRef]
- Aiger, D.; Mitra, N.J.; Cohen-Or, D. 4-points congruent sets for robust pairwise surface registration. In ACM SIGGRAPH 2008 Papers; Association for Computing Machinery: New York, NY, USA, 2008; pp. 1–10. [Google Scholar]
- Mellado, N.; Aiger, D.; Mitra, N.J. Super 4pcs fast global pointcloud registration via smart indexing. In Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2014; Volume 33, pp. 205–215. 4p. [Google Scholar]
- Mohamad, M.; Ahmed, M.T.; Rappaport, D.; Greenspan, M. Super generalized 4pcs for 3d registration. In Proceedings of the 2015 International Conference on 3D Vision, Lyon, France, 19–20 October 2015; pp. 598–606. [Google Scholar]
- Sipiran, I.; Bustos, B. Harris 3D: A robust extension of the Harris operator for interest point detection on 3D meshes. Vis. Comput. 2011, 27, 963–976. [Google Scholar] [CrossRef]
- Salti, S.; Tombari, F.; Di Stefano, L. SHOT: Unique signatures of histograms for surface and texture description. Comput. Vis. Image Underst. 2014, 125, 251–264. [Google Scholar] [CrossRef]
- Rusu, R.B.; Blodow, N.; Beetz, M. Fast point feature histograms (FPFH) for 3D registration. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3212–3217. [Google Scholar]
- Kim, C.; Son, H.; Kim, C. Fully automated registration of 3D data to a 3D CAD model for project progress monitoring. Autom. Constr. 2013, 35, 587–594. [Google Scholar] [CrossRef]
- Liu, J.; He, X.; Huang, X. An improved registration strategy for aligning incomplete blade measurement data to its model. Optik 2021, 243, 167304. [Google Scholar] [CrossRef]
- Lei, H.; Jiang, G.; Quan, L. Fast descriptors and correspondence propagation for robust global point cloud registration. IEEE Trans. Image Process. 2017, 26, 3614–3623. [Google Scholar] [CrossRef] [PubMed]
- Sorkine, O. Least-squares rigid motion using svd. Technol. Notes 2009, 120, 52. [Google Scholar]
- Liu, Y.; Xiong, Y.l. Algorithm for searching nearest-neighbor based on the bounded kd tree. J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.) 2008, 36, 73. [Google Scholar]
- Rusu, R.B.; Cousins, S. 3d is here: Point cloud library (pcl). In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1–4. [Google Scholar]
Point Cloud | Number of Points | Bounding Box Dimensions | |||
---|---|---|---|---|---|
Scene | Model | Length (mm) | Width (mm) | Height (mm) | |
Blade 1 | 393,419 | 812,541 | 98.9793 | 42.8394 | 30.0117 |
Blade 2 | 505,177 | 235,153 | 77.1192 | 61.0042 | 22.3977 |
Blade 3 | 316,136 | 651,775 | 122.395 | 56.6682 | 46.0813 |
Blade 4 | 475,620 | 400,243 | 98.5815 | 56.4624 | 33.6747 |
Blade 5 | 4,687,185 | 5,000,000 | 314.598 | 206.38 | 101.325 |
Point Cloud | MSE (mm2) | |||
---|---|---|---|---|
KDDAR (Ours) | PCA | Super 4PCS | RANSAC | |
Blade 1 | 0.00877 | 8.30541 | 1.13038 | 0.802914 |
Blade 2 | 0.1200 | 15.9042 | 1.39444 | 0.526328 |
Blade 3 | 0.04067 | 2.28668 | 1.05332 | 2.77349 |
Blade 4 | 0.03157 | 24.2637 | 1.73901 | 6.91692 |
Blade 5 | 0.81494 | 7.79815 | 9.93981 | 15.3917 |
Method | Deviation (mm) | ||
---|---|---|---|
Max | Min | Mean | |
KDDAR (ours) | 0.3322 | −0.3126 | 0.0149 |
PCA | 3.9349 | −3.0225 | 0.9351 |
Super 4PCS | 1.6723 | −1.1075 | 0.0284 |
RANSAC | 3.0186 | −3.0209 | 0.241 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Zhang, Y.; Jia, Z.; Wang, Z.; Fang, Q.; Zhang, X. A Four-Point Orientation Method for Scene-to-Model Point Cloud Registration of Engine Blades. Electronics 2024, 13, 4634. https://doi.org/10.3390/electronics13234634
Li D, Zhang Y, Jia Z, Wang Z, Fang Q, Zhang X. A Four-Point Orientation Method for Scene-to-Model Point Cloud Registration of Engine Blades. Electronics. 2024; 13(23):4634. https://doi.org/10.3390/electronics13234634
Chicago/Turabian StyleLi, Duanjiao, Ying Zhang, Ziran Jia, Zhiyu Wang, Qiu Fang, and Xiaogang Zhang. 2024. "A Four-Point Orientation Method for Scene-to-Model Point Cloud Registration of Engine Blades" Electronics 13, no. 23: 4634. https://doi.org/10.3390/electronics13234634
APA StyleLi, D., Zhang, Y., Jia, Z., Wang, Z., Fang, Q., & Zhang, X. (2024). A Four-Point Orientation Method for Scene-to-Model Point Cloud Registration of Engine Blades. Electronics, 13(23), 4634. https://doi.org/10.3390/electronics13234634