Effect of Cosmic Rays on the Failure Rate of Flexible Direct Current Converter Valves in High-Altitude Environment
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Q.; Tai, S.; Lu, W.; Sun, J.; Lv, T.; Liu, C.; Sun, Y.; Lv, J.; Liu, W.; Sun, T.; et al. Design of pure silica-based photonic crystal fiber for supporting 114 OAM modes transmission. J. Opt. 2021, 23, 095701. [Google Scholar] [CrossRef]
- Lu, F.; Wright, R.; Lu, P.; Cvetic, P.C.; Ohodnicki, P.R. Distributed fiber optic pH sensors using sol-gel silica based sensitive materials. Sens. Actuators B Chem. 2021, 340, 129853. [Google Scholar] [CrossRef]
- Saiding, Q.; Cui, W. Functional nanoparticles in electrospun fibers for biomedical applications. Nano Sel. 2022, 3, 999–1011. [Google Scholar] [CrossRef]
- Girard, S.; Morana, A.; Ladaci, A.; Robin, T.; Mescia, L.; Bonnefois, J.-J.; Boutillier, M.; Mekki, J.; Paveau, A.; Cadier, B.; et al. Recent advances in radiation-hardened fiber-based technologies for space applications. J. Opt. 2018, 20, 093001. [Google Scholar] [CrossRef]
- Girard, S.; Kuhnhenn, J.; Gusarov, A.; Brichard, B.; Uffelen, M.V.; Ouerdane, Y.; Boukenter, A.; Marcandella, C. Radiation Effects on Silica-Based Optical Fibers: Recent Advances and Future Challenges. IEEE Trans. Nucl. Sci. 2013, 60, 2015–2036. [Google Scholar] [CrossRef]
- Barrera, D.; Madrigal, J.; Delepine-Lesoille, S.; Sales, S. Multicore optical fiber shape sensors suitable for use under gamma radiation. Opt. Express 2019, 27, 29026–29033. [Google Scholar] [CrossRef] [PubMed]
- Girard, S.; Alessi, A.; Richard, N.; Martin-Samos, L.; De Michele, V.; Giacomazzi, L.; Agnello, S.; Francesca, D.D.; Morana, A.; Winkler, B.; et al. Overview of radiation induced point defects in silica-based optical fibers. Rev. Phys. 2019, 4, 100032. [Google Scholar] [CrossRef]
- Zeller, H.R. Cosmic ray induced breakdown in high voltage semiconductor devices, microscopic model and phenomenological lifetime prediction. In Proceedings of the 6th International Symposium on Power Semiconductor Devices and ICs, Davos, Switzerland, 31 May–2 June 1994; pp. 339–340. [Google Scholar]
- Zeller, H.R. Cosmic ray induced failures in high power semiconductor devices. Solid-State Electron. 1995, 38, 2041–2046. [Google Scholar] [CrossRef]
- Prado, R.A.; Gajo, C.N.L. Power semiconductor failures due to cosmic rays. In Proceedings of the 2017 Brazilian Power Electronics Conference (COBEP), Juiz de Fora, Brazil, 19–22 November 2017; pp. 1–6. [Google Scholar]
- Matsuda, H.; Fujiwara, T.; Hiyoshi, M.; Nishitani, K.; Kuwako, A.; Ikehara, T. Analysis of GTO failure mode during DC voltage blocking. In Proceedings of the 6th International Symposium on Power Semiconductor Devices and ICs, Davos, Switzerland, 31 May–2 June 1994; pp. 221–225. [Google Scholar]
- Kole, M.; Fukazawa, Y.; Fukuda, K.; Ishizu, S.; Jackson, M.; Kamae, T.; Kawaguchi, N.; Kawano, T.; Kiss, M.; Moretti, E.; et al. A balloon-borne measurement of high latitude atmospheric neutrons using a licaf neutron detector. In Proceedings of the 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), Seoul, Republic of Korea, 27 October–2 November 2013; pp. 1–8. [Google Scholar] [CrossRef]
- Akturk, A.; Wilkins, R.; Gunthoti, K.; Wender, S.A.; Goldsman, N. Energy Dependence of Atmospheric Neutron-Induced Failures in Silicon Carbide Power Devices. IEEE Trans. Nucl. Sci. 2022, 69, 900–907. [Google Scholar] [CrossRef]
- Zhang, Z.; Lei, Z.; Shi, Q.; Yue, L.; Huang, Y.; En, Y. Neutron Radiation Environment and Result Single Event Effects Prediction in Near Space. J. Space Sci. 2018, 38, 502–507. (In Chinese) [Google Scholar]
- Cai, M.; Zhang, Z.; Feng, G.; Zhu, L.; Han, J. Study of Near Space Neutron Environment and Its Effects on Electronic Device. Equip. Environ. Eng. 2007, 4, 23–29. (In Chinese) [Google Scholar]
- Wang, X.; Zhang, F.; Chen, W.; Guo, X.; Ding, L.; Luo, Y. Application and evaluation of Chinese spallation neutron source in single-event effects testing. Acta Phys. Sin. 2019, 68, 38–47. (In Chinese) [Google Scholar] [CrossRef]
- Regnier, E.; Flammer, I.; Girard, S.; Gooijer, F.; Achten, F.; Kuyt, G. Low-Dose Radiation-Induced Attenuation at InfraRed Wavelengths for P-Doped, Ge-Doped and Pure Silica-Core Optical Fibres. IEEE Trans. Nucl. Sci. 2007, 54, 1115–1119. [Google Scholar] [CrossRef]
- Girard, S.; Keurinck, J.; Boukenter, A.; Meunier, J.P.; Ouerdane, Y.; Azaıs, B.; Charre, P.; Vié, M. Gamma-rays and pulsed X-ray radiation responses of nitrogen-, germanium-doped and pure silica core optical fibers. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2004, 215, 187–195. [Google Scholar] [CrossRef]
- Girard, S.; Marcandella, C.; Alessi, A.; Boukenter, A.; Ouerdane, Y.; Richard, N.; Paillet, P.; Gaillardin, M.; Raine, M. Transient Radiation Responses of Optical Fibers: Influence of MCVD Process Parameters. IEEE Trans. Nucl. Sci. 2012, 59, 2894–2901. [Google Scholar] [CrossRef]
- Peng, C.; Lei, Z.; Zhang, Z.; Yang, S.; Lai, P.; Lu, G. Measurement and Simulation of Ground-level Atmospheric Neutron Energy Spectra in Typical Regions of China. High Power Laser Part. Beams 2023, 35, 153–158. (In Chinese) [Google Scholar] [CrossRef]
- Li Vecchi, G.; Di Francesca, D.; Sabatier, C.; Girard, S.; Alessi, A.; Guttilla, A.; Robin, T.; Kadi, Y.; Brugger, M. Infrared radiation Induced attenuation of radiation sensitive optical fibers: Influence of temperature and modal propagation. Opt. Fiber Technol. 2020, 55, 102166. [Google Scholar] [CrossRef]
- Faustov, A.V.; Gusarov, A.; Wuilpart, M.; Fotiadi, A.A.; Liokumovich, L.B.; Zolotovskiy, I.O.; Tomashuk, A.L.; Schoutheete, T.d.; Mégret, P. Comparison of Gamma-Radiation Induced Attenuation in Al-Doped, P-Doped and Ge-Doped Fibres for Dosimetry. IEEE Trans. Nucl. Sci. 2013, 60, 2511–2517. [Google Scholar] [CrossRef]
- Francesca, D.D.; Boukenter, A.; Agnello, S.; Girard, S.; Alessi, A.; Paillet, P.; Marcandella, C.; Richard, N.; Gelardi, F.M.; Ouerdane, Y. X-ray irradiation effects on fluorine-doped germanosilicate optical fibers. Opt. Mater. Express 2014, 4, 1683–1695. [Google Scholar] [CrossRef]
- Smietana, M.; Bock, W.J.; Mikulic, P.; Chen, J. Tuned Pressure Sensitivity of Dual Resonant Long-Period Gratings Written in Boron Co-Doped Optical Fiber. J. Light. Technol. 2012, 30, 1080–1084. [Google Scholar] [CrossRef]
Parameter Name | Parameter Index |
---|---|
Energy range | meV~GeV |
Neutron irradiation spot area | 20 cm × 15 cm |
Neutron flux at sample (Energy above 10 MeV) | 4.7 × 105/n/cm2/s |
Equipment Name | Equipment Model |
---|---|
Atmospheric Neutron Irradiation Spectrometer | ANIS |
High-voltage DC power supplies | DSP |
High- and low-temperature box | NT125-55AS |
No. | Voltage (V) | Number of Samples | Number of Failures | Total Effective Neutron Injection (n/cm2) |
---|---|---|---|---|
1 | 2000 | 30 | 0 | 1.21 × 1011 |
2 | 2050 | 30 | 2 | 1.18 × 1011 |
3 | 2100 | 30 | 3 | 1.13 × 1011 |
4 | 2200 | 30 | 11 | 7.83 × 1010 |
5 | 2300 | 37 | 23 | 3.54 × 1010 |
Voltage (V) | Failure Rate at 4000 m (FIT) | 4000 m Failure Rate Confidence Interval (FIT, 95% Confidence) | Failure Rate at 2000 m (FIT) | 2000 m Failure Rate Confidence Interval (FIT, 95% Confidence) | Failure Rate at Sea Level (FIT) | Sea Level Failure Rate Confidence Interval (FIT, 95% Confidence) | |
---|---|---|---|---|---|---|---|
1 | 2000 | <9.60 × 10−1 | / | <2.65 × 10−1 | / | <5.13 × 10−2 | / |
2 | 2050 | 1.96 | 2.38 × 10−1, 5.46 | 5.41 × 10−1 | 6.55 × 10−2, 1.51 | 1.05 × 10−1 | 1.27 × 10−2, 2.92 × 10−1 |
3 | 2100 | 3.08 | 6.35 × 10−1, 7.41 | 8.49 × 10−1 | 1.75 × 10−1, 2.04 | 1.64 × 10−1 | 3.39 × 10−2, 3.96 × 10−1 |
4 | 2200 | 16.3 | 8.13, 27.2 | 4.49 | 2.24, 7.51 | 8.71 × 10−1 | 4.35 × 10−1, 1.46 |
5 | 2300 | 75.4 | 47.8, 109 | 20.8 | 13.2, 30.1 | 4.03 | 2.56, 5.84 |
No. | Voltage (V) | Number of Samples | Number of Failures | Total Effective Neutron Injection (n/cm2) |
---|---|---|---|---|
1 | 2100 | 15 | 0 | 5.94 × 1010 |
2 | 2150 | 15 | 0 | 5.92 × 1010 |
3 | 2200 | 15 | 3 | 4.05 × 1010 |
4 | 2250 | 15 | 4 | 1.44 × 1010 |
5 | 2300 | 15 | 10 | 2.78 × 1010 |
6 | 2700 | 15 | 12 | 5.46 × 109 |
7 | 2800 | 15 | 13 | 1.99 × 109 |
8 | 2900 | 15 | 14 | 8.32 × 108 |
9 | 3000 | 15 | 14 | 3.17 × 108 |
10 | 3100 | 15 | 13 | 1.33 × 108 |
Voltage (V) | Failure Rate at 4000 m (FIT) | 4000 m Failure Rate Confidence Interval (FIT, 95% Confidence) | Failure Rate at 2000 m (FIT) | 2000 m Failure Rate Confidence Interval (FIT, 95% Confidence) | Failure Rate at Sea Level (FIT) | Sea Level Failure Rate Confidence Interval (FIT, 95% Confidence) | |
---|---|---|---|---|---|---|---|
1 | 2100 | <1.95 | / | <5.39 × 10−1 | / | <1.04 × 10−1 | / |
2 | 2150 | <1.96 | / | <5.40 × 10−1 | / | <1.05 × 10−1 | / |
3 | 2200 | 8.58 | 1.77, 20.7 | 2.37 | 4.88 × 10−1, 5.70 | 4.59 × 10−1 | 9.46 × 10−2, 1.10 |
4 | 2250 | 32.3 | 8.79, 70.7 | 8.90 | 2.43, 19.5 | 1.72 | 4.70 × 10−1, 3.78 |
5 | 2300 | 41.7 | 20, 71.2 | 11.5 | 5.51, 19.6 | 2.23 | 1.07, 3.81 |
6 | 2700 | 255 | 132, 418 | 70.3 | 36.3, 115 | 13.6 | 7.04, 22.3 |
7 | 2800 | 759 | 404, 1220 | 2.09 × 102 | 1.12 × 102, 3.38 × 102 | 40.6 | 21.6, 65.4 |
8 | 2900 | 1.95 × 103 | 1.07 × 103, 3.10 × 103 | 5.38 × 102 | 2.94 × 102, 8.55 × 102 | 1.04 × 102 | 57.0, 1.66 × 102 |
9 | 3000 | 5.12 × 103 | 3.90 × 103, 8.14 × 103 | 1.41 × 103 | 1.08 × 103, 2.24 × 103 | 2.74 × 102 | 2.09 × 102, 4.35 × 102 |
10 | 3100 | 1.14 × 104 | 6.05 × 103, 1.83 × 104 | 3.14 × 103 | 1.67 × 103, 5.06 × 103 | 6.07 × 102 | 3.23 × 102, 9.80 × 102 |
No. | Voltage (V) | Number of Samples | Number of Failures | Total Effective Neutron Injection (n/cm2) |
---|---|---|---|---|
1 | 2000 | 5 | 0 | 1.01 × 1010 |
2 | 2100 | 5 | 3 | 4.56 × 109 |
3 | 2150 | 5 | 5 | 3.71 × 109 |
4 | 2250 | 5 | 4 | 2.27 × 109 |
5 | 2300 | 5 | 5 | 1.96 × 107 |
6 | 2400 | 5 | 3 | 1.81 × 106 |
Voltage (V) | Failure Rate at 4000 m (FIT) | 4000 m Failure Rate Confidence Interval (FIT, 95% Confidence) | Failure Rate at 2000 m (FIT) | 2000 m Failure Rate Confidence Interval (FIT, 95% Confidence) | Failure Rate at Sea Level (FIT) | Sea Level Failure Rate Confidence Interval (FIT, 95% Confidence) | |
---|---|---|---|---|---|---|---|
1 | 2000 | <11.5 | / | <3.18 | / | <6.16 × 10−1 | / |
2 | 2100 | 76.4 | 15.7, 1.84 × 102 | 21.1 | 4.34, 50.7 | 4.08 | 8.42 × 10−1, 9.83 |
3 | 2150 | 1.56 × 102 | 50.8, 3.20 × 102 | 43.2 | 14.0, 88.4 | 8.36 | 2.72, 17.1 |
4 | 2250 | 2.04 × 102 | 55.7, 4.48 × 102 | 56.4 | 15.4, 1.24 × 102 | 10.9 | 2.98, 23.9 |
5 | 2300 | 2.95 × 104 | 9.59 × 103, 6.05 × 104 | 8.14 × 103 | 2.64 × 103, 1.67 × 104 | 1.58 × 103 | 5.12 × 102, 3.23 × 103 |
6 | 2400 | 1.92 × 105 | 1.02 × 106, 1.19 × 107 | 5.31 × 104 | 2.81 × 105, 3.28 × 106 | 1.03 × 104 | 5.44 × 104, 6.35 × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Zhang, Z.; Zhou, Y.; Wang, D.; Peng, C.; Zhang, H.; Lei, Z.; Zhang, Z.; Fu, W.; Ma, T. Effect of Cosmic Rays on the Failure Rate of Flexible Direct Current Converter Valves in High-Altitude Environment. Electronics 2024, 13, 4790. https://doi.org/10.3390/electronics13234790
Yang L, Zhang Z, Zhou Y, Wang D, Peng C, Zhang H, Lei Z, Zhang Z, Fu W, Ma T. Effect of Cosmic Rays on the Failure Rate of Flexible Direct Current Converter Valves in High-Altitude Environment. Electronics. 2024; 13(23):4790. https://doi.org/10.3390/electronics13234790
Chicago/Turabian StyleYang, Liu, Zezhao Zhang, Yuebin Zhou, Daming Wang, Chao Peng, Hong Zhang, Zhifeng Lei, Zhangang Zhang, Weili Fu, and Teng Ma. 2024. "Effect of Cosmic Rays on the Failure Rate of Flexible Direct Current Converter Valves in High-Altitude Environment" Electronics 13, no. 23: 4790. https://doi.org/10.3390/electronics13234790
APA StyleYang, L., Zhang, Z., Zhou, Y., Wang, D., Peng, C., Zhang, H., Lei, Z., Zhang, Z., Fu, W., & Ma, T. (2024). Effect of Cosmic Rays on the Failure Rate of Flexible Direct Current Converter Valves in High-Altitude Environment. Electronics, 13(23), 4790. https://doi.org/10.3390/electronics13234790