Battery State-of-Health Estimation: A Step towards Battery Digital Twins
Abstract
:1. Introduction
2. Battery SOH Estimation
3. Battery Data and Health Feature Extraction
3.1. Battery Data Set
3.2. Extraction of Battery Health-Related Features
4. Methods
4.1. Pre-Processing Method
4.1.1. Cleaning Data
4.1.2. Resampling Data
4.1.3. Normalizing Data
4.1.4. Building the 2D Discharge Voltage Data Set
4.1.5. Applying a Sliding Window and Building a New 2D Data Set
4.2. Training Model
4.2.1. CNN Model for Automatic Feature Extraction
4.2.2. LSTM Model for Temporal Dependency
4.2.3. CNN–LSTM Model for Automatic Feature Extraction
4.3. Performance Evaluation
5. Results and Discussion
5.1. Simulation Setup
5.2. Comparative Analysis
- Case 1: with and without data pre-processing;
- Case 2: with data pre-processing and different sizes of training data;
- Case 3: with data pre-processing and different sizes of the sliding window;
- Case 4: with data pre-processing and with dropout.
5.2.1. Case 1: Battery SOH Estimation with and without the Proposed Data Pre-Processing Method
5.2.2. Case 2: Battery SOH Estimation with the Proposed Data Pre-Processing Method and Using Different Sizes of Training Data
5.2.3. Case 3: Battery SOH Estimation with the Proposed Data Pre-Processing Method and Using Different Sliding Window Sizes
5.2.4. Case 4: Battery SOH Estimation with the Proposed Data Pre-Processing Method and Using Data Dropout
6. Battery DT with Online Learning
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NASA | National Aeronautics and Space Administration |
Li-ion | Lithium-ion |
BMS | Battery management system |
SOH | State-of-health |
SOC | State-of-charge |
RUL | Remaining useful life |
EOL | End-of-life |
DT | Digital twin |
RBF | Radial basis function |
MC | Monte Carlo |
DTV | Differential thermal voltammetry |
CC | Constant current |
CV | Constant voltage |
1D | One-dimensional |
2D | Two-dimensional |
ML | Machine learning |
DL | Deep learning |
NN | Neural network |
FNN | Feed-forward neural network |
DNN | Deep neural network |
CNN | Convolutional neural network |
TCNN | Temporal convolutional neural network |
RNN | Recurrent neural network |
LSTM | Long short-term memory |
GRU | Gated recurrent unit |
DBN | Deep belief network |
RMSE | Root-mean-squared error |
MAE | Mean absolute error |
MAPE | Mean absolute percentage error |
PSO | Particle swarm optimization |
References
- Jagadale, A.; Zhou, X.; Xiong, R.; Dubal, D.P.; Xu, J.; Yang, S. Lithium ion capacitors (LICs): Development of the materials. Energy Storage Mater. 2019, 19, 314–329. [Google Scholar] [CrossRef]
- Vanem, E.; Salucci, C.B.; Bakdi, A.; Sheim Alnes, Ø.Å. Data-driven state of health modelling—A review of state of the art and reflections on applications for maritime battery systems. J. Energy Storage 2021, 43, 103158. [Google Scholar] [CrossRef]
- Rahimi-Eichi, H.; Ojha, U.; Baronti, F.; Chow, M.Y. Battery management system: An overview of its application in the smart grid and electric vehicles. IEEE Ind. Electron. Mag. 2013, 7, 4–16. [Google Scholar] [CrossRef]
- Lin, C.P.; Cabrera, J.; Yang, F.; Ling, M.H.; Tsui, K.L.; Bae, S.J. Battery state of health modeling and remaining useful life prediction through time series model. Appl. Energy 2020, 275, 115338. [Google Scholar] [CrossRef]
- Tian, H.; Qin, P.; Li, K.; Zhao, Z. A review of the state of health for lithium-ion batteries: Research status and suggestions. J. Clean. Prod. 2020, 261, 120813. [Google Scholar] [CrossRef]
- Ahooyi, S.S.; Abdollahi, F. Fault detection of Lithium-Ion Battery in Electric Vehicles Considering Ageing Effects. In Proceedings of the 2022 8th International Conference on Control, Instrumentation and Automation (ICCIA), Tehran, Iran, 2–3 March 2022; pp. 1–5. [Google Scholar]
- Rauf, H.; Khalid, M.; Arshad, N. Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling. Renew. Sustain. Energy Rev. 2022, 156, 111903. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.F. Prognostics and health management of Lithium-ion battery using deep learning methods: A review. Renew. Sustain. Energy Rev. 2022, 161, 112282. [Google Scholar] [CrossRef]
- Xia, G.; Cao, L.; Bi, G. A review on battery thermal management in electric vehicle application. J. Power Sources 2017, 367, 90–105. [Google Scholar] [CrossRef]
- Sun, W.; Wang, P.; Xu, N.; Wang, G.; Zhang, Y. Dynamic digital twin and distributed incentives for resource allocation in aerial-assisted internet of vehicles. IEEE Internet Things J. 2021, 9, 5839–5852. [Google Scholar] [CrossRef]
- Errandonea, I.; Beltrán, S.; Arrizabalaga, S. Digital Twin for maintenance: A literature review. Comput. Ind. 2020, 123, 103316. [Google Scholar] [CrossRef]
- van Dinter, R.; Tekinerdogan, B.; Catal, C. Predictive maintenance using digital twins: A systematic literature review. Inf. Softw. Technol. 2022, 151, 107008. [Google Scholar] [CrossRef]
- Khan, S.; Farnsworth, M.; McWilliam, R.; Erkoyuncu, J. On the requirements of digital twin-driven autonomous maintenance. Annu. Rev. Control. 2020, 50, 13–28. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Tian, J.; Lu, J.; Xiong, R. Application of digital twin in smart battery management systems. Chin. J. Mech. Eng. 2021, 34, 57. [Google Scholar] [CrossRef]
- Zhao, K.; Liu, Y.; Ming, W.; Zhou, Y.; Wu, J. Digital twin-driven estimation of state of charge for Li-ion battery. In Proceedings of the 2022 IEEE 7th International Energy Conference (ENERGYCON), Riga, Latvia, 9–12 May 2022; pp. 1–6. [Google Scholar]
- Li, H.; Kaleem, M.B.; Chiu, I.J.; Gao, D.; Peng, J. A Digital Twin Model for the Battery Management Systems of Electric Vehicles. In Proceedings of the 2021 IEEE 23rd International Conference on High Performance Computing & Communications; 7th International Conference on Data Science & Systems; 19th International Conference on Smart City; 7th International Conference on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), Haikou, China, 20–22 December 2021; pp. 1100–1107. [Google Scholar]
- Bazmohammadi, N.; Madary, A.; Vasquez, J.C.; Mohammadi, H.B.; Khan, B.; Wu, Y.; Guerrero, J.M. Microgrid digital twins: Concepts, applications, and future trends. IEEE Access 2021, 10, 2284–2302. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, J.; Sun, Z.; Wang, L.; Xu, R.; Li, M.; Chen, Z. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. Renew. Sustain. Energy Rev. 2020, 131, 110015. [Google Scholar] [CrossRef]
- Tran, M.K.; Mathew, M.; Janhunen, S.; Panchal, S.; Raahemifar, K.; Fraser, R.; Fowler, M. A comprehensive equivalent circuit model for lithium-ion batteries, incorporating the effects of state of health, state of charge, and temperature on model parameters. J. Energy Storage 2021, 43, 103252. [Google Scholar] [CrossRef]
- Li, W.; Cao, D.; Jöst, D.; Ringbeck, F.; Kuipers, M.; Frie, F.; Sauer, D.U. Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries. Appl. Energy 2020, 269, 115104. [Google Scholar] [CrossRef]
- Vermeer, W.; Mouli, G.R.C.; Bauer, P. A comprehensive review on the characteristics and modeling of lithium-ion battery aging. IEEE Trans. Transp. Electrif. 2021, 8, 2205–2232. [Google Scholar] [CrossRef]
- Kong, X.; Zhao, X.; Li, C.; Jia, Z.; Yang, C.; Wu, Z.; Zhao, X.; Zhao, Y.; He, F.; Ren, Y.; et al. Terminal Group-Oriented Self-Assembly to Controllably Synthesize a Layer-by-Layer SnSe2 and MXene Heterostructure for Ultrastable Lithium Storage. Small 2023, 19, 2206563. [Google Scholar] [CrossRef]
- Driscoll, L.; de la Torre, S.; Gomez-Ruiz, J.A. Feature-based lithium-ion battery state of health estimation with artificial neural networks. J. Energy Storage 2022, 50, 104584. [Google Scholar] [CrossRef]
- Lipu, M.H.; Ansari, S.; Miah, M.S.; Meraj, S.T.; Hasan, K.; Shihavuddin, A.; Hannan, M.; Muttaqi, K.M.; Hussain, A. Deep learning enabled state of charge, state of health and remaining useful life estimation for smart battery management system: Methods, implementations, issues and prospects. J. Energy Storage 2022, 55, 105752. [Google Scholar]
- Lyu, Z.; Wang, G.; Gao, R. Synchronous state of health estimation and remaining useful lifetime prediction of Li-Ion battery through optimized relevance vector machine framework. Energy 2022, 251, 123852. [Google Scholar] [CrossRef]
- Khumprom, P.; Yodo, N. A data-driven predictive prognostic model for lithium-ion batteries based on a deep learning algorithm. Energies 2019, 12, 660. [Google Scholar] [CrossRef]
- Xia, Z.; Qahouq, J.A.A. Lithium-ion battery ageing behavior pattern characterization and state-of-health estimation using data-driven method. IEEE Access 2021, 9, 98287–98304. [Google Scholar] [CrossRef]
- She, C.; Wang, Z.; Sun, F.; Liu, P.; Zhang, L. Battery aging assessment for real-world electric buses based on incremental capacity analysis and radial basis function neural network. IEEE Trans. Ind. Inform. 2019, 16, 3345–3354. [Google Scholar] [CrossRef]
- Raman, M.; Champa, V.; Prema, V. State of health estimation of lithium-ion batteries using recurrent neural network and its variants. In Proceedings of the 2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 9–11 July 2021; pp. 1–6. [Google Scholar]
- Park, K.; Choi, Y.; Choi, W.J.; Ryu, H.Y.; Kim, H. LSTM-based battery remaining useful life prediction with multi-channel charging profiles. IEEE Access 2020, 8, 20786–20798. [Google Scholar] [CrossRef]
- Zheng, Y.; Hu, J.; Chen, J.; Deng, H.; Hu, W. State of health estimation for lithium battery random charging process based on CNN-GRU method. Energy Rep. 2023, 9, 1–10. [Google Scholar] [CrossRef]
- Ren, L.; Dong, J.; Wang, X.; Meng, Z.; Zhao, L.; Deen, M.J. A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life. IEEE Trans. Ind. Inform. 2020, 17, 3478–3487. [Google Scholar] [CrossRef]
- Kara, A. A data-driven approach based on deep neural networks for lithium-ion battery prognostics. Neural Comput. Appl. 2021, 33, 13525–13538. [Google Scholar] [CrossRef]
- Jin, X.B.; Yang, A.; Su, T.; Kong, J.L.; Bai, Y. Multi-channel fusion classification method based on time-series data. Sensors 2021, 21, 4391. [Google Scholar] [CrossRef]
- Cui, S.; Joe, I. A dynamic spatial-temporal attention-based GRU model with healthy features for state-of-health estimation of lithium-ion batteries. IEEE Access 2021, 9, 27374–27388. [Google Scholar] [CrossRef]
- Wang, J.; Deng, Z.; Yu, T.; Yoshida, A.; Xu, L.; Guan, G.; Abudula, A. State of health estimation based on modified Gaussian process regression for lithium-ion batteries. J. Energy Storage 2022, 51, 104512. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Y.; Huang, Y.; Bhushan Gopaluni, R.; Cao, Y.; Heere, M.; Mühlbauer, M.J.; Mereacre, L.; Dai, H.; Liu, X.; et al. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation. Nat. Commun. 2022, 13, 2261. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Yang, S.; Zhang, L.; Wang, W.; Chen, S.; Yang, X.; Xie, H.; Yu, H.; Wang, H.; Liu, X. Remaining useful life and state of health prediction for lithium batteries based on differential thermal voltammetry and a deep-learning model. J. Power Sources 2022, 548, 232030. [Google Scholar] [CrossRef]
- NASA. Ames Prognostics Data Repository. 2007. Available online: http://ti.arc.nasa.gov/project/prognostic-data-repository (accessed on 30 January 2024).
- Ma, Y.; Shan, C.; Gao, J.; Chen, H. Multiple health indicators fusion-based health prognostic for lithium-ion battery using transfer learning and hybrid deep learning method. Reliab. Eng. Syst. Saf. 2023, 229, 108818. [Google Scholar] [CrossRef]
- Xu, H.; Wu, L.; Xiong, S.; Li, W.; Garg, A.; Gao, L. An improved CNN-LSTM model-based state-of-health estimation approach for lithium-ion batteries. Energy 2023, 276, 127585. [Google Scholar] [CrossRef]
- Greenbank, S.; Howey, D. Automated feature extraction and selection for data-driven models of rapid battery capacity fade and end of life. IEEE Trans. Ind. Inform. 2021, 18, 2965–2973. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A survey. Mech. Syst. Signal Process. 2021, 151, 107398. [Google Scholar] [CrossRef]
- Gong, Q.; Wang, P.; Cheng, Z. An encoder-decoder model based on deep learning for state of health estimation of lithium-ion battery. J. Energy Storage 2022, 46, 103804. [Google Scholar] [CrossRef]
- Gu, X.; See, K.; Li, P.; Shan, K.; Wang, Y.; Zhao, L.; Lim, K.C.; Zhang, N. A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model. Energy 2023, 262, 125501. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, B. Battery health prognosis using improved temporal convolutional network modeling. J. Energy Storage 2022, 51, 104480. [Google Scholar] [CrossRef]
- Sagar, R. Big Data to Good Data: Andrew ng Urges ML Community to Be More Data-Centric and Less Model-Centric. 2021. Available online: https://analyticsindiamag.com/big-data-to-good-data-andrew-ng-urges-ml-community-to-be-more-data-centric-and-less-model-centric/ (accessed on 30 January 2024).
- Barai, A.; Uddin, K.; Dubarry, M.; Somerville, L.; McGordon, A.; Jennings, P.; Bloom, I. A comparison of methodologies for the non-invasive characterisation of commercial Li-ion cells. Prog. Energy Combust. Sci. 2019, 72, 1–31. [Google Scholar] [CrossRef]
- Movassagh, K.; Raihan, A.; Balasingam, B.; Pattipati, K. A critical look at coulomb counting approach for state of charge estimation in batteries. Energies 2021, 14, 4074. [Google Scholar] [CrossRef]
- Shin, H.C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef] [PubMed]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, F.; Verma, B.; Asafuddoula, M. Impact of automatic feature extraction in deep learning architecture. In Proceedings of the 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Gold Coast, Australia, 30 November–2 December 2016; pp. 1–8. [Google Scholar]
- Luo, K.; Chen, X.; Zheng, H.; Shi, Z. A review of deep learning approach to predicting the state of health and state of charge of lithium-ion batteries. J. Energy Chem. 2022, 74, 159–173. [Google Scholar] [CrossRef]
- Meng, H.; Geng, M.; Xing, J.; Zio, E. A hybrid method for prognostics of lithium-ion batteries capacity considering regeneration phenomena. Energy 2022, 261, 125278. [Google Scholar] [CrossRef]
- Shaheen, K.; Hanif, M.A.; Hasan, O.; Shafique, M. Continual learning for real-world autonomous systems: Algorithms, challenges and frameworks. J. Intell. Robot. Syst. 2022, 105, 9. [Google Scholar] [CrossRef]
- Li, Y.; Tao, J. CNN and transfer learning based online SOH estimation for lithium-ion battery. In Proceedings of the 2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 22–24 August 2020; pp. 5489–5494. [Google Scholar]
- Yan, N.; Yao, Y.B.; Jia, Z.D.; Liu, L.; Dai, C.T.; Li, Z.G.; Zhang, Z.H.; Li, W.; Wang, L.; Wang, P.F. Online battery health diagnosis for electric vehicles based on DTW-XGBoost. Energy Rep. 2022, 8, 121–128. [Google Scholar] [CrossRef]
Battery ID | Rated Capacity | Rated Voltage/End Voltage | Discharge Current | CC/CV |
---|---|---|---|---|
B0005 | 2 Ah | 3.7/2.7 V | 2A | 20 mA |
B0006 | 2 Ah | 3.7/2.5 V | 2A | 20 mA |
B0007 | 2 Ah | 3.7/2.2 V | 2A | 20 mA |
Battery ID | Error Type | With Proposed Pre-Processing | Without Proposed Pre-Processing | ||
---|---|---|---|---|---|
CNN | LSTM | CNN | LSTM | ||
B0005 | RMSE | 0.010 | 0.012 | 0.061 | 0.084 |
MAE | 0.007 | 0.008 | 0.054 | 0.071 | |
B0006 | RMSE | 0.013 | 0.014 | 0.052 | 0.093 |
MAE | 0.009 | 0.009 | 0.041 | 0.079 | |
B0007 | RMSE | 0.009 | 0.010 | 0.076 | 0.088 |
MAE | 0.006 | 0.006 | 0.072 | 0.081 |
Battery ID | Training Data | Model | ||
---|---|---|---|---|
(cycle) | CNN | LSTM | CNN-LSTM | |
1–80 | 0.014 | 0.016 | 0.014 | |
B0005 | 1–100 | 0.011 | 0.012 | 0.011 |
1–120 | 0.010 | 0.011 | 0.010 | |
1–80 | 0.021 | 0.023 | 0.021 | |
B0006 | 1–100 | 0.014 | 0.013 | 0.012 |
1–120 | 0.013 | 0.013 | 0.014 | |
1–80 | 0.016 | 0.015 | 0.014 | |
B0007 | 1–100 | 0.009 | 0.010 | 0.008 |
1–120 | 0.008 | 0.010 | 0.007 |
Battery ID | Sliding Window | Model | ||
---|---|---|---|---|
CNN | LSTM | CNN-LSTM | ||
5 × 5 | 0.009 | 0.012 | 0.010 | |
B0005 | 10 × 10 | 0.010 | 0.012 | 0.010 |
20 × 20 | 0.011 | 0.017 | 0.012 | |
5 × 5 | 0.012 | 0.014 | 0.012 | |
B0006 | 10 × 10 | 0.014 | 0.013 | 0.012 |
20 × 20 | 0.014 | 0.014 | 0.014 | |
5 × 5 | 0.010 | 0.009 | 0.008 | |
B0007 | 10 × 10 | 0.009 | 0.010 | 0.009 |
20 × 20 | 0.011 | 0.009 | 0.010 |
Battery ID | Dropout | Model | ||
---|---|---|---|---|
CNN | LSTM | CNN-LSTM | ||
B0005 | NO | 0.011 | 0.012 | 0.011 |
YES | 0.019 | 0.012 | 0.10 | |
B0006 | NO | 0.014 | 0.013 | 0.014 |
YES | 0.013 | 0.012 | 0.013 | |
B0007 | NO | 0.009 | 0.010 | 0.009 |
YES | 0.010 | 0.009 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safavi, V.; Bazmohammadi, N.; Vasquez, J.C.; Guerrero, J.M. Battery State-of-Health Estimation: A Step towards Battery Digital Twins. Electronics 2024, 13, 587. https://doi.org/10.3390/electronics13030587
Safavi V, Bazmohammadi N, Vasquez JC, Guerrero JM. Battery State-of-Health Estimation: A Step towards Battery Digital Twins. Electronics. 2024; 13(3):587. https://doi.org/10.3390/electronics13030587
Chicago/Turabian StyleSafavi, Vahid, Najmeh Bazmohammadi, Juan C. Vasquez, and Josep M. Guerrero. 2024. "Battery State-of-Health Estimation: A Step towards Battery Digital Twins" Electronics 13, no. 3: 587. https://doi.org/10.3390/electronics13030587
APA StyleSafavi, V., Bazmohammadi, N., Vasquez, J. C., & Guerrero, J. M. (2024). Battery State-of-Health Estimation: A Step towards Battery Digital Twins. Electronics, 13(3), 587. https://doi.org/10.3390/electronics13030587