Two-Stage Point Cloud Registration Framework Based on Graph Neural Network and Attention
Abstract
:1. Introduction
- We propose a simple and fast deep network for point cloud registration;
- We decompose the registration process into global estimation and fine-tuning stages;
- For the fine-tuning stage, an attentional graph neural network with attention as well as feature-enhancing modules and a mismatch-suppression mechanism is proposed, which has proved effective against partially visible data with noises and outliers;
- Experiments show that our method is effective in registering low-overlapping point cloud pairs and robust to variable noises as well as outliers;
- Our method achieves a state-of-the-art performance on the ModelNet40 dataset over various evaluation criteria and is computationally efficient.
2. Problem Formulation
3. TSGANet
3.1. Input of Model
3.2. Global Estimation Stage
3.2.1. Graph Feature Embedding Network
3.2.2. Direct Transformation Estimation
3.3. Fine-Tuning Stage
3.3.1. Attentional Multilayer Graph Neural Network
3.3.2. Point Correspondence-Based Transformation Estimation
3.3.3. Mismatch Suppression Mechanism
3.4. Loss Function
4. Experiments
4.1. Implementation Details
4.2. Datasets and Evaluation Metrics
4.3. Low-Overlapping Data
4.4. Variable Noises and Outliers
4.5. Real Data
4.6. Ablation Studies
4.6.1. Necessity of Each Module
4.6.2. Value of k
5. Conclusions
6. Limitations and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Clean Data
Methods | Partially Visible Data | Complete Data | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
RRE | RTE | CD | RR (%) | Time (ms) | RRE | RTE | CD | RR (%) | Time (ms) | |
ICP | 23.0985 | 0.1845 | 0.013 | 7.2 | 3 | 5.4000 | 0.0152 | 67.6 | 3 | |
FGR | 11.8501 | 0.0410 | 61.2 | 27 | 3.2779 | 82.1 | 36 | |||
DCP-v2 | 17.2519 | 0.2121 | 0.018 | 0.12 | 9 | 1.9726 | 61.4 | 14 | ||
RPM-Net | 1.0649 | 0.0103 | 92.0 | 38 | 0.6243 | 4.0 × 10−4 | 97.8 | 56 | ||
RGM | 1.5093 | 0.0095 | 92.7 | 126 | 0.3908 | 99.8 | 678 | |||
RegTR | 1.3471 | 0.0121 | 89.0 | 36 | 0.5142 | 3.2 × 10−7 | 89.4 | 57 | ||
OGMM | 3.3694 | 0.0108 | 0.1824 | 86.4 | 26 | —— | —— | —— | —— | —— |
Ours | 0.7103 | 0.0086 | 2.6 × 10−4 | 96.6 | 27 | 0.5274 | 99.2 | 42 |
References
- Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. In Proceedings of the Sensor fusion IV: Control Paradigms and Data Structures, Boston, MA, USA, 14–15 November 1991; Volume 1611, pp. 586–606. [Google Scholar]
- Chen, Y.; Medioni, G. Object modelling by registration of multiple range images. Image Vis. Comput. 1992, 10, 145–155. [Google Scholar] [CrossRef]
- Rusinkiewicz, S.; Levoy, M. Efficient variants of the ICP algorithm. In Proceedings of the Third International Conference on 3-D Digital Imaging and Modeling, Quebec City, QC, Canada, 28 May–1 June 2001; pp. 145–152. [Google Scholar]
- Low, K.L. Linear least-squares optimization for point-to-plane icp surface registration. Chapel Hill Univ. N. C. 2004, 4, 1–3. [Google Scholar]
- Li, P.; Wang, R.; Wang, Y.; Tao, W. Evaluation of the ICP Algorithm in 3D Point Cloud Registration. IEEE Access 2020, 8, 68030–68048. [Google Scholar] [CrossRef]
- Li, J.; Hu, Q.; Ai, M. Point Cloud Registration Based on One-Point RANSAC and Scale-Annealing Biweight Estimation. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9716–9729. [Google Scholar] [CrossRef]
- Theiler, P.W.; Wegner, J.D.; Schindler, K. Markerless point cloud registration with keypoint-based 4-points congruent sets. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 2013, 2, 283–288. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Sarode, V.; Li, X.; Goforth, H.; Aoki, Y.; Srivatsan, R.A.; Lucey, S.; Choset, H. PCRNet: Point Cloud Registration Network using PointNet Encoding. arXiv 2019, arXiv:1908.07906. [Google Scholar]
- Zhang, Z.; Chen, G.; Wang, X.; Shu, M. DDRNet: Fast point cloud registration network for large-scale scenes. ISPRS J. Photogramm. Remote Sens. 2021, 175, 184–198. [Google Scholar] [CrossRef]
- Wang, Y.; Solomon, J. Deep Closest Point: Learning Representations for Point Cloud Registration. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3522–3531. [Google Scholar]
- Yew, Z.J.; Lee, G.H. RPM-Net: Robust Point Matching Using Learned Features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11824–11833. [Google Scholar]
- Fu, K.; Liu, S.; Luo, X.; Wang, M. Robust Point Cloud Registration Framework Based on Deep Graph Matching. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 8889–8898. [Google Scholar]
- Qin, Z.; Yu, H.; Wang, C.; Guo, Y.; Peng, Y.; Ilic, S.; Hu, D.; Xu, K. GeoTransformer: Fast and Robust Point Cloud Registration with Geometric Transformer. arXiv 2023, arXiv:2308.03768. [Google Scholar] [CrossRef] [PubMed]
- Arun, K.S.; Huang, T.S.; Blostein, S.D. Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 1987, PAMI-9, 698–700. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3D ShapeNets: A deep representation for volumetric shapes. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1912–1920. [Google Scholar]
- Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic graph cnn for learning on point clouds. ACM Trans. Graph. 2019, 38, 1–12. [Google Scholar] [CrossRef]
- Sarlin, P.E.; DeTone, D.; Malisiewicz, T.; Rabinovich, A. SuperGlue: Learning Feature Matching With Graph Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 4937–4946. [Google Scholar]
- Sinkhorn, R. A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann. Math. Stat. 1964, 35, 876–879. [Google Scholar] [CrossRef]
- Charles, R.Q.; Su, H.; Kaichun, M.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 77–85. [Google Scholar]
- Yew, Z.J.; Lee, G.H. REGTR: End-to-End Point Cloud Correspondences With Transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 6677–6686. [Google Scholar]
- Zhou, Q.Y.; Park, J.; Koltun, V. Fast global registration. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 766–782. [Google Scholar]
- Mei, G.; Poiesi, F.; Saltori, C.; Zhang, J.; Ricci, E.; Sebe, N. Overlap-guided Gaussian Mixture Models for Point Cloud Registration. In Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2–7 January 2023; pp. 4500–4509. [Google Scholar] [CrossRef]
- Zhou, Q.Y.; Park, J.; Koltun, V. Open3D: A modern library for 3D data processing. arXiv 2018, arXiv:1801.09847. [Google Scholar]
Methods | Data with Noises | Data with Outliers | |||||||
---|---|---|---|---|---|---|---|---|---|
RRE | RTE | CD | RR (%) | Time (ms) | RRE | RTE | RR (%) | Time (ms) | |
ICP | 24.02 | 0.1856 | 0.013 | 11.7 | 3 | 28.42 | 0.1881 | 9.2 | 3 |
FGR | 53.17 | 0.1859 | 0.030 | 7.0 | 9 | 17.25 | 0.0505 | 64.5 | 27 |
DCP-v2 | 17.94 | 0.2132 | 0.019 | 1.1 | 9 | 20.76 | 0.2053 | 0.16 | 10 |
RPM-Net | 1.24 | 0.0121 | 95.3 | 37 | 4.36 | 0.0301 | 66.8 | 43 | |
RGM | 2.79 | 0.0219 | 87.8 | 127 | 4.68 | 0.0337 | 73.3 | 149 | |
RegTR | 1.68 | 0.0137 | 8.4 × 10−4 | 93.2 | 35 | 2.69 | 0.0237 | 83.8 | 42 |
OGMM | 3.1543 | 0.0084 | 0.1834 | 87.4 | 26 | 2.7766 | 0.0068 | 85.7 | 26 |
Ours | 1.14 | 0.0130 | 97.3 | 27 | 1.53 | 0.0128 | 96.0 | 29 |
Methods | Data with Noises | Data with Outliers | |||||||
---|---|---|---|---|---|---|---|---|---|
RRE | RTE | CD | RR (%) | Time (ms) | RRE | RTE | RR (%) | Time (ms) | |
ICP | 43.74 | 0.328 | 0.031 | 6.4 | 2 | 41.63 | 0.307 | 3.6 | 2 |
FGR | 58.70 | 0.356 | 0.043 | 2.8 | 5 | 38.43 | 14.901 | 39.1 | 16 |
DCP-v2 | 32.75 | 0.565 | 0.259 | 0 | 6 | 29.69 | 0.561 | 0 | 7 |
RPM-Net | 7.86 | 0.103 | 0.126 | 61.4 | 48 | 10.96 | 0.133 | 29.4 | 34 |
RGM | 18.54 | 0.165 | 0.086 | 52.3 | 84 | 20.40 | 0.166 | 34.5 | 94 |
RegTR | 5.09 | 0.089 | 0.123 | 58.8 | 28 | 6.098 | 0.077 | 53.0 | 31 |
OGMM | 3.078 | 0.0074 | 0.184 | 86.5 | 26 | 2.0082 | 0.0044 | 88.4 | 27 |
Ours | 3.97 | 0.103 | 0.184 | 55.4 | 18 | 6.100 | 0.082 | 49.1 | 21 |
Models | Data with Noises | Data with Outliers | |||
---|---|---|---|---|---|
RRE | RTE | CD | RRE | RTE | |
TSGANet_v1 | 9.23 | 0.1902 | 0.023 | 15.65 | 0.1793 |
TSGANet_v2 | 2.96 | 0.0175 | 3.50 | 0.0203 | |
TSGANet_v3 | 1.79 | 0.0141 | 1.95 | 0.0201 | |
TSGANet | 1.14 | 0.0130 | 1.53 | 0.0128 |
k | Data with Noises | Data with Outliers | |||
---|---|---|---|---|---|
RRE | RTE | CD | RRE | RTE | |
0 | 15.4210 | 0.1977 | 0.024 | 14.1295 | 0.1497 |
5 | 4.3958 | 0.0717 | 1.0915 | 0.0125 | |
10 | 1.7125 | 0.0241 | 1.2708 | 0.0124 | |
20 | 1.1366 | 0.0130 | 1.5299 | 0.0128 | |
30 | 1.3948 | 0.0149 | 1.7527 | 0.0142 | |
40 | 1.6513 | 0.0168 | 1.9619 | 0.0163 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, J.; Zhang, W.; Xu, Y.; Li, F. Two-Stage Point Cloud Registration Framework Based on Graph Neural Network and Attention. Electronics 2024, 13, 654. https://doi.org/10.3390/electronics13030654
Zhang X, Li J, Zhang W, Xu Y, Li F. Two-Stage Point Cloud Registration Framework Based on Graph Neural Network and Attention. Electronics. 2024; 13(3):654. https://doi.org/10.3390/electronics13030654
Chicago/Turabian StyleZhang, Xiaoqian, Junlin Li, Wei Zhang, Yansong Xu, and Feng Li. 2024. "Two-Stage Point Cloud Registration Framework Based on Graph Neural Network and Attention" Electronics 13, no. 3: 654. https://doi.org/10.3390/electronics13030654
APA StyleZhang, X., Li, J., Zhang, W., Xu, Y., & Li, F. (2024). Two-Stage Point Cloud Registration Framework Based on Graph Neural Network and Attention. Electronics, 13(3), 654. https://doi.org/10.3390/electronics13030654