Hybrid FSO/RF Communications in Space–Air–Ground Integrated Networks: A Reduced Overhead Link Selection Policy
Abstract
:1. Introduction
1.1. Relevant Works
1.2. Contributions
- A new channel selection scheme has been proposed and used in a hybrid FSO/RF SAGIN dual-hop communication scenario. The new scheme is designed to offer reduced overhead signaling with satisfactory performance.
- For the new scheme, the Markov chain theory has been employed to derive exact analytical expressions for the statistics of the end-to-end output SNR. The analysis presented also takes into account the impact of atmospheric turbulence and pointing errors (for the FSO link) as well as multipath fading and shadowing (for the RF link).
- In the high SNR regime, simpler asymptotic closed-form expressions are also provided, which have been used to elaborate on the physical insights of the considered scenarios.
- The analytical results derived are used to study the OP of the proposed scheme, while the signaling overhead has also been quantified using the criteria of average number of links estimation (NLE) and switching probability (SP).
- The numerical evaluated results presented reveal the reduction in the computational complexity (in terms of signaling overhead), which results in important energy savings without significantly affecting the system’s performance.
2. System and Channel Models
2.1. System Model
Link Selection Policy
2.2. Channel Model
3. Markov Chain-Based Statistical Analysis
4. Performance Analysis
4.1. Outage Probability
High SNR Analysis
4.2. Overhead Estimation
4.2.1. Average Link Estimation
4.2.2. Switching Probability
5. Numerical Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AWGN | Additive White Gaussian Noise |
CDF | Cumulative Distribution Function |
DF | Decode-and-Forward |
FSO | Free Space Optical |
HAPS | High-Altitude Platform Station |
LAP | Low-Altitude Platform |
LEO | Low Earth Orbit |
NLE | Number of Link Estimation |
OP | Outage Probability |
Probability Density Function | |
RF | Radio Frequency |
RIS | Reconfigurable Intelligent Surface |
SAGIN | Satellite Aerial Ground Integrated Networks |
SNR | Signal-to-Noise Ratio |
SP | Switching Probability |
UAV | Unmanned Aerial Vehicles |
References
- Liu, J.; Shi, Y.; Fadlullah, Z.M.; Kato, N. Space-air-ground integrated network: A survey. IEEE Commun. Surv. Tutor. 2018, 20, 2714–2741. [Google Scholar] [CrossRef]
- Guo, H.; Li, J.; Liu, J.; Tian, N.; Kato, N. A survey on space-air-ground-sea integrated network security in 6G. IEEE Commun. Surv. Tutor. 2022, 24, 53–87. [Google Scholar] [CrossRef]
- Shang, B.; Yi, Y.; Liu, L. Computing over space-air-ground integrated networks: Challenges and opportunities. IEEE Netw. 2021, 35, 302–309. [Google Scholar] [CrossRef]
- Ye, J.; Dang, S.; Shihada, B.; Alouini, M.S. Space-air-ground integrated networks: Outage performance analysis. IEEE Trans. Wirel. Commun. 2020, 19, 7897–7912. [Google Scholar] [CrossRef]
- Niu, Z.; Shen, X.S.; Zhang, Q.; Tang, Y. Space-air-ground integrated vehicular network for connected and automated vehicles: Challenges and solutions. Intell. Converg. Netw. 2020, 1, 142–169. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Hasan, M.K.; Shahjalal, M.; Hossan, M.T.; Jang, Y.M. Optical Wireless Hybrid Networks: Trends, Opportunities, Challenges, and Research Directions. IEEE Commun. Surv. Tutor. 2020, 22, 930–966. [Google Scholar] [CrossRef]
- Anandkumar, D.; Sangeetha, R. A survey on performance enhancement in free space optical communication system through channel models and modulation techniques. Opt. Quantum Electron. 2021, 53, 5. [Google Scholar] [CrossRef]
- Nadeem, F.; Kvicera, V.; Awan, M.S.; Leitgeb, E.; Muhammad, S.S.; Kandus, G. Weather effects on hybrid FSO/RF communication link. IEEE J. Sel. Areas Commun. 2009, 27, 1687–1697. [Google Scholar] [CrossRef]
- Barrios, R.; Dios, F. Exponentiated Weibull distribution family under aperture averaging for Gaussian beam waves. Opt. Express 2012, 20, 13055–13064. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Yang, H.C.; Alouini, M.S. Practical switching-based hybrid FSO/RF transmission and its performance analysis. IEEE Photonics J. 2014, 6, 1–13. [Google Scholar] [CrossRef]
- Kurt, G.K.; Khoshkholgh, M.G.; Alfattani, S.; Ibrahim, A.; Darwish, T.S.; Alam, M.S.; Yanikomeroglu, H.; Yongacoglu, A. A vision and framework for the high altitude platform station (HAPS) networks of the future. IEEE Commun. Surv. Tutor. 2021, 23, 729–779. [Google Scholar] [CrossRef]
- Jia, Z.; Sheng, M.; Li, J.; Han, Z. Toward data collection and transmission in 6G space–air–ground integrated networks: Cooperative HAP and LEO satellite schemes. IEEE Internet Things J. 2021, 9, 10516–10528. [Google Scholar] [CrossRef]
- Liu, X.; Lin, M.; Zhu, W.P.; Wang, J.Y.; Upadhyay, P.K. Outage performance for mixed FSO-RF transmission in satellite-aerial-terrestrial networks. IEEE Photon. Technol. Lett. 2020, 32, 1349–1352. [Google Scholar] [CrossRef]
- Kong, H.; Lin, M.; Zhu, W.P.; Amindavar, H.; Alouini, M.S. Multiuser Scheduling for Asymmetric FSO/RF Links in Satellite-UAV-Terrestrial Networks. IEEE Wirel. Commun. Lett. 2020, 9, 1235–1239. [Google Scholar] [CrossRef]
- Yang, L.; Guo, W.; Ansari, I.S. Mixed dual-hop FSO-RF communication systems through reconfigurable intelligent surface. IEEE Commun. Lett. 2020, 24, 1558–1562. [Google Scholar] [CrossRef]
- Lei, X.; Yang, L.; Zhang, J.; Li, G.; Chen, J. LAP-Based FSO-RF Cooperative NOMA Systems. In Proceedings of the 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, BC, Canada, 18 November–16 December 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Swaminathan, R.; Sharma, S.; Vishwakarma, N.; Madhukumar, A. HAPS-based relaying for integrated space–air–ground networks with hybrid FSO/RF communication: A performance analysis. IEEE Trans. Aerosp. Electron. 2021, 57, 1581–1599. [Google Scholar]
- Yahia, O.B.; Erdogan, E.; Kurt, G.K.; Altunbas, I.; Yanikomeroglu, H. HAPS selection for hybrid RF/FSO satellite networks. IEEE Trans. Aerosp. Electron. 2022, 58, 2855–2867. [Google Scholar] [CrossRef]
- Yahia, O.B.; Erdogan, E.; Kurt, G.K. HAPS-assisted hybrid RF-FSO multicast communications: Error and outage analysis. IEEE Trans. Aerosp. Electron. 2023, 59, 140–152. [Google Scholar] [CrossRef]
- Samy, R.; Yang, H.C.; Rakia, T.; Alouini, M.S. Hybrid SAG-FSO/SH-FSO/RF transmission for next-generation satellite communication systems. IEEE Trans. Veh. Technol. 2023, 72, 14255–14267. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Song, X.; Shao, L.; Li, H. RIS Assisted UAV for Weather-Dependent Satellite Terrestrial Integrated Network with Hybrid FSO/RF Systems. IEEE Photonics J. 2023, 15, 7304217. [Google Scholar] [CrossRef]
- Michailidis, E.T.; Bithas, P.S.; Nomikos, N.; Vouyioukas, D.; Kanatas, A.G. Outage probability analysis in multi-user FSO/RF and UAV-enabled MIMO communication networks. Phys. Commun. 2021, 49, 101475. [Google Scholar] [CrossRef]
- Sharif, S.; Zeadally, S.; Ejaz, W. Space-aerial-ground-sea integrated networks: Resource optimization and challenges in 6G. J. Netw. Comput. Appl. 2023, 215, 103647. [Google Scholar] [CrossRef]
- Viswanath, A.; Jain, V.K.; Kar, S. Analysis of earth-to-satellite free-space optical link performance in the presence of turbulence, beam-wander induced pointing error and weather conditions for different intensity modulation schemes. IET Commun. 2015, 9, 2253–2258. [Google Scholar] [CrossRef]
- Sharma, S.; Madhukumar, A.; Ramabadran, S. Performance of dual-hop hybrid FSO/RF system with pointing errors optimization. In Proceedings of the IEEE 91st Vehicular Technology Conference, Virtual Event, 25–28 May 2020; pp. 1–5. [Google Scholar]
- Kaushal, H.; Kaddoum, G. Optical communication in space: Challenges and mitigation techniques. IEEE Commun. Surv. Tutor. 2016, 19, 57–96. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 6th ed.; Academic Press: New York, NY, USA, 2000. [Google Scholar]
- Viswanath, A.; Gopal, P.; Jain, V.K.; Kar, S. Performance enhancement by aperture averaging in terrestrial and satellite free space optical links. IET Optoelectron. 2016, 10, 111–117. [Google Scholar] [CrossRef]
- Bithas, P.S.; Nikolaidis, V.; Kanatas, A.G.; Karagiannidis, G.K. UAV-to-Ground communications: Channel modeling and UAV selection. IEEE Trans. Commun. 2020, 68, 5135–5144. [Google Scholar] [CrossRef]
- Bithas, P.S.; Rontogiannis, A.A.; Karagiannidis, G.K. An Improved Threshold-Based Channel Selection Scheme for Wireless Communication Systems. IEEE Trans. Wirel. Commun. 2016, 15, 1531–1546. [Google Scholar] [CrossRef]
- Bertsekas, D.; Tsitsiklis, J.N. Introduction to Probability; Athena Scientific: Nashua, NH, USA, 2008; Volume 1. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables; Courier Corporation: Chelmsford, MA, USA, 1964; Volume 55. [Google Scholar]
- The Wolfram Functions Site. 2024. Available online: https://functions.wolfram.com/ (accessed on 7 January 2024).
Parameter | Definition | Value |
---|---|---|
FSO wavelength | 1550 nm | |
Satellite height | 620 km | |
HAPS height | 20 km | |
Ground station height | 10 m | |
Transmit telescope gain | 5 dB | |
FSO transmit power | 5 dBm | |
Receive telescope gain | 10 dB | |
Variance of the AWGN noise | ||
Optical to electrical conversion coefficient | 0.8 | |
Pointing error coefficient | 13.07 | |
Zenith angle | 65° | |
w | Wind velocity | 4 Lm/s |
Beam radius at the transmitter | 2 cm | |
Phase front radius of curvature of the beam | ∞ | |
Small-scale fading shaping parameters | ||
Shadowing shaping parameters | ||
v | Path loss factor | |
Transmit power for RF communications | 20 dBm | |
Noise power | dBm | |
RF transmit antenna gain | 20 dB | |
RF receive antenna gain | 20 dB | |
RF links wavelength | m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bithas, P.S.; Nistazakis, H.E.; Katsis, A.; Yang, L. Hybrid FSO/RF Communications in Space–Air–Ground Integrated Networks: A Reduced Overhead Link Selection Policy. Electronics 2024, 13, 806. https://doi.org/10.3390/electronics13040806
Bithas PS, Nistazakis HE, Katsis A, Yang L. Hybrid FSO/RF Communications in Space–Air–Ground Integrated Networks: A Reduced Overhead Link Selection Policy. Electronics. 2024; 13(4):806. https://doi.org/10.3390/electronics13040806
Chicago/Turabian StyleBithas, Petros S., Hector E. Nistazakis, Athanassios Katsis, and Liang Yang. 2024. "Hybrid FSO/RF Communications in Space–Air–Ground Integrated Networks: A Reduced Overhead Link Selection Policy" Electronics 13, no. 4: 806. https://doi.org/10.3390/electronics13040806
APA StyleBithas, P. S., Nistazakis, H. E., Katsis, A., & Yang, L. (2024). Hybrid FSO/RF Communications in Space–Air–Ground Integrated Networks: A Reduced Overhead Link Selection Policy. Electronics, 13(4), 806. https://doi.org/10.3390/electronics13040806