Evaluating the Potential of Floating Photovoltaic Plants in Pumped Hydropower Reservoirs in Spain
Abstract
:1. Introduction
- (i)
- (ii)
- A lower presence of dust. The presence of dust in these systems is lower compared to ground-based systems.
- (iii)
- Less external near shadows. The water surfaces are free of obstacles, such as trees, thus minimising losses due to nearby external shadows [7].
- (iv)
- No land occupancy. By using water bodies for the implementation of FPV plants, a competition for land is avoided, leaving these areas available for agriculture or other green uses [8].
- (i)
- The variable production of an FPV plant. As solar energy is intermittent, the output of an FPV plant is variable, affecting the stability of the electricity grid. PHS plants are like nature’s batteries; they store and release energy as needed. Therefore, a PHS plant brings stability to the operation of an FPV plant.
- (ii)
- The increase in the utilisation rate of the assigned grid connection capacity. The grid connection capacity assigned to a PHS plant is the right to use a certain connection line up to a certain capacity for the transmission of electricity from the PHS plant. This assigned capacity is underutilised during most PHS plant operating hours. The joint use of both plants with the assigned grid connection capacity ensures an increase in electricity generation.
- (iii)
- The joint use of existing electricity transmission infrastructure in PHS plants.
- (iv)
- Less water evaporation from reservoirs. The mounting systems used with PV modules do not allow the sun’s rays to hit the water [5], and the PV modules also limit the effects of wind. Assessing surface water evaporation involves a complex mix of different factors. Water temperature, open water surface, vapour pressure difference, wind, atmospheric pressure and water properties are the most important factors [8]. Several studies have been published in the literature on water savings due to the evaporation phenomenon in a reservoir with an FPV plant [8,11,12]. The baseline data in these studies are very different, and so are the results. For guidance, the annual reduction in water losses due to evaporation can be considered as (L/kWh) [8].
- (v)
- Improved water quality. A lack of sunlight is known to favour the reduction of algae growth [13].
- (i)
- To present a comprehensive study of the potential of integrating FPV plants in the upper reservoirs of all active PHS plants in Spain.
- (ii)
- To define assessment indicators for the possible operating modes of both plants, such as the solar potential, electrical efficiency, assigned grid connection capacity of a PHS plant, water volume in the upper reservoir and water surface in the upper reservoir.
- (iii)
- To analyse the energy storage capacity of a PHS plant based on the power of an FPV plant.
2. Location of PHS Plants in Spain
3. FPV Plant Design
- (i)
- The shape of the available area. FPV plant design is strongly influenced by the constructional shape of the floating platform. Irregular shaping of the available surface area is not possible with this type of plant, unlike with ground-mounted PV power plants. The design of an FPV plant more closely resembles the regularly shaped available surface [29]. Therefore, a rectangular shape is the norm for an FPV plant; although a combination of rectangular shapes can also be used [30,31]. Additionally, algorithms can help optimise the available surface area [32,33]. This study uses the optimisation algorithm presented by [33]. The shape and dimensions of the floating platform used in the design define the shape of the FPV plant.
- (ii)
- The floating platform. The floating platforms used to support PV modules in FPV plants can be designed in several different ways, which can be classified as follows [31]: (a) floating platforms equipped with floats covering the entire surface below the module, (b) floating platforms equipped with tubular flotation systems where PV modules are anchored, (c) top channel mounting systems, and (f) flexible floating platforms. System (a) was used in this study. There are several manufacturers of this type of floating platform: [34,35,36]. A flotation platform with the following dimensions was used in this design: (mm) [34]. A connecting floating body is also required as a support point during the construction and maintenance of the FPV system.
- (iii)
- (iv)
- The tilt angle of the PV modules. The choice of the tilt angle of the PV modules is directly related to the stability of the modules. Therefore, the criterion of maximising the incident solar irradiance on the PV modules used in ground-mounted PV plants does not apply to this type of plant [20]. Factors such as wind loads, waves and water currents limit the tilt angle of a PV module. Therefore, commercial floating platforms allow the following standard values for the tilt angle: 5 (°) [34,35], 12 (°) [35], and 15 (°) [36]. The FPV plant design features floating platforms that can withstand wind loads of 180 (km/h) with a tilt angle of 5 (°) [34]. Failure to use the optimum tilt angle would result in energy losses of between and for the locations of the PHS plants in Spain [38].
- (v)
- The orientation of the PV modules. As the PHS plants are located in the northern hemisphere, the optimal orientation is 0 (°) [39].
- (vi)
- The mounting system of the PV modules. Although PV module mounting systems used in ground-mounted PV plants can be of a fixed or variable tilt angle, only fixed tilt angle mounting systems were used due to the fact that module stability is the predominant criterion in the FPV plant design. Furthermore, among all possible configurations used in ground-mounted PV plants [32]: , , , , only the configuration was used in the design of the FPV plants in this study (see Figure 3b).
- (vii)
- The transversal and longitudinal installation distance. The transverse and longitudinal installation distances are imposed by the floating platform [34] used in the plant design. These distances in the chosen model are [34]: the transverse installation distance— (mm) and a longitudinal installation distance— (mm) (see Figure 3b).
- (viii)
- (ix)
- The weather conditions. Incident solar irradiance data over a horizontal surface is essential for estimating the electricity production of an FPV plant. As it is unlikely that a meteorological station will be available at the upper reservoir to record the components of the global solar irradiance over a horizontal surface, models must be used to estimate them. Software that provides the necessary solar irradiance data to estimate the electricity production of an FPV plant is available on the market, e.g., Meteonorm [42], PVGIS [43], Solcast [44], etc. The latitude and altitude of the location under study are the input for such software. Meteonorm software version 8.0 was chosen for use in this study.
4. Assessment Indicators
4.1. Solar Potential
4.2. Electrical Efficiency
4.3. The Size of the FPV Plant
4.3.1. Assigned Grid Connection Capacity of the Corresponding PHS Plant
4.3.2. Volume of Water in the Upper Reservoir
4.3.3. Water Surface in the Upper Reservoir
5. Results and Discussion
5.1. Analysis of Preliminary Data
5.2. FPV Plant Design
5.3. Solar Potential
- (i)
- The following hydropower plants meet this criterion: Guillena, Pintado and Gobantes.
- (ii)
- The following hydropower plants are between and of this criterion: La Muela I, La Muela II, Villarino, Tajo de la Encantada, Sallente, Aldeadávila II, Moralets, Valdecañas, Bolarque II, Torrejón, Valparaíso, Gabriel y Galán, Montamara, Guijo de Granadilla and Urdiceto.
- (iii)
- The following hydropower plants are between and of this criterion: Conso, Soutelo, Bao-Puente Bibey, Santiago de Jares and IPt.
- (iv)
- The Aguayo PHS plant is between and of this criterion.
- (v)
- Finally, the Tanes PHS plant is below of this criterion.
5.4. Electrical Efficiency
- (i)
- The following hydropower plants meet this criterion: Aguayo, Sallente, Aldeadávila II, Moralets PHS, Tanes, Montamara, Soutelo, Bao-Puente Bibey, Santiago de Jares, IP and Urdiceto.
- (ii)
- The following hydropower plants are between and of this criterion: La Muela I, La Muela II, Villarino, Tajo de la Encantada, Conso, Valdecañas, Guillena, Bolarque II, Torrejón, Valparaíso, Gabriel y Galán, Guijo de Granadilla, Pintado and Gobantes.
5.5. Assigned Grid Connection Capacity of a PHS Plant
- (i)
- The following hydropower plants meet this criterion: Villarino, Tajo de la Encantada, Conso, Valdecañas, Tanes, Torrejón, Valparaíso, Gabriel y Galán, Montamara, Soutelo, Bao-Puente Bibey, Guijo de Granadilla, Santiago de Jares, Pintado, Urdiceto, and Gobantes.
- (ii)
- The following hydropower plants do not meet this criterion: La Muela I, La Muela II, Aguayo, Sallente, Aldeadávila II, Moralets, Guillena, Bolarque II, Montamara and the IP.
5.6. Volume of Water in the Upper Reservoir
- (i)
- The following hydropower plants meet this criterion: Villarino, Valdecañas, Torrejón, Valparaíso, Gabriel y Galán, Guijo de Granadilla, Pintado and Gobantes.
- (ii)
- The following hydropower plants do not meet this criterion: La Muela I, La Muela II, Tajo de la Encantada, Aguayo, Sallente, Aldeadávila II, Conso, Moralets, Guillena, Bolarque II, Tanes, Montamara, Soutelo, Bao-Puente Bibey, Santiago de Jares, IP and Urdiceto.
- (i)
- With the minimum value of energy generated per day, the capacity of the upper reservoir cannot in any case be pumped in one day.
- (ii)
- With the maximum value of energy generated per day, the capacity of the upper reservoir can be pumped in one day only at the Guijo de Granadilla PHS plant and the Gobantes PHS plant.
5.7. Water Surface in the Upper Reservoir
- (i)
- The following hydropower plants meet this criterion: Villarino, Tajo de la Encantada, Conso, Valdecañas, Tanes, Torrejón, Valparaíso, Gabriel y Galán, Soutelo, Bao-Puente Bibey, Guijo de Granadilla, Santiago de Jares, Pintado, Urdiceto and Gobantes.
- (ii)
- The following hydropower plants do not meet this criterion: La Muela I, La Muela II, Aguayo, Sallente, Aldeadávila II, Moralets, Guillena, Bolarque II, Montamara and IP.
5.8. Suitability of PHS Plants for the Implementation of FPV Plants
- (i)
- The global horizontal irradiance ratio () ensures the economic viability of an FPV plant and is therefore an elimination criterion. Therefore, the implementation of an FPV plant at the following hydropower plants is not advised: the Aguayo PHS plant and the Tanes PHS plant.
- (ii)
- The compliance with the electrical efficiency ratio () is flexible. All hydropower plants meet this criterion.
- (iii)
- The area required ratio () is very important when it comes to operating PHS and FPV plants independently and maximising the assigned grid connection capacity. Therefore, if the assigned grid connection capacity is to be maximised, the following hydropower plants are not suitable for the implementation of an FPV plant: La Muela I, La Muela II, Aguayo, Sallente, Aldeadávila II, Moralets, Guillena, Bolarque II, Montamara and IP.
- (iv)
- The pumping area ratio () is important if the chosen mode of operation is for the two plants to store energy together. Under these conditions, the following hydropower plants are not suitable for the implementation of an FPV plant: La Muela I, La Muela II, Tajo de la Encantada, Aguayo, Sallente, Aldeadávila II, Conso, Moralets, Guillena, Bolarque II, Tanes, Montamara, Soutelo, Bao-Puente Bibey, Santiago de Jares, IP and Urdiceto. The ratio of the volume of water pumped per day () is not met by any of the hydropower plants under study.
- (v)
- The achievable power ratio () is an informative criterion for the possibility of expanding an FPV plant. The following hydropower plants do not meet this criterion: La Muela I, La Muela II, Aguayo, Sallente, Aldeadávila II, Moralets, Guillena, Bolarque II, Montamara and IP.
6. Conclusions
- (i)
- The criterion of incident solar irradiation at a given location is the most important, as it excludes the PHS plant. The installation of an FPV plant at the Aguayo PHS and the Tanes PHS hydropower plants is discouraged, as the global horizontal irradiance ratio is very low.
- (ii)
- Maximising the use of the assigned grid connection capacity is one of the objectives the electrical companies seek when installing FPV plants at existing PHS plants. Therefore, this criterion is also fundamental. The following hydropower plants are not advisable for the implementation of an FPV plant based on this criterion: La Muela I, La Muela II, Aguayo, Sallente, Aldeadávila II, Moralets, Guillena, Bolarque II, Montamara and the IP.
- (iii)
- If the objective is to store energy, the implementation of an FPV plant in the PHS plants listed below is not recommended: La Muela I, La Muela II, Tajo de la Encantada, Aguayo, Sallente, Aldeadávila II, Conso, Moralets, Guillena, Bolarque II, Tanes, Montamara, Soutelo, Bao-Puente Bibey, Santiago de Jares, IP and the Urdiceto.
- (iv)
- If the objective is to expand an FPV plant already installed at a PHS plant, the following hydropower plants do not meet this criterion: La Muela I, La Muela II, Aguayo, Sallente, Aldeadávila II, Moralets, Guillena, Bolarque II, Montamara and the IP.
- (v)
- Although this is not a fundamental criterion, all the hydropower plants analysed meet the criterion of the electricity efficiency ratio.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Area of the plant (m2) | |
Achievable power ratio | |
Area required ratio | |
Area of the upper reservoir (m2) | |
Electrical efficiency ratio | |
Potential energy stored (Ws) | |
Global horizontal irradiation (kWh/m2) | |
Global horizontal irradiation ratio | |
g | Acceleration due to gravity (m/s2) |
Available head (m) | |
Elevating head (m) | |
Total irradiance on a tilted surface (W/m2) | |
Normal operating cell temperature (°C) | |
Pumping area ratio | |
Volume ratio of water pumped per day | |
Power of the plant (W) | |
Assigned grid connection capacity of a plant (W) | |
Power input of the electric motor (W) | |
Elevating power (W) | |
Power output of the electric generator (W) | |
Hydraulic power (W) | |
Turbined flow rate (m3/s) | |
Pumped flow rate (m3/s) | |
Ambient temperature (°C) | |
cell temperature (°C) | |
Reference temperature (°C) | |
Water pumped per day with the electrical energy generated by the plant (m3) | |
Volume of water in the upper reservoir (m3) | |
Tilt angle of photovoltaic module (°) | |
Temperature coefficient (1/°C) | |
Azimuth angle of photovoltaic module (°) | |
PV module efficiency (%) | |
Electric generator efficiency (%) | |
Electric motor efficiency (%) | |
Pump efficiency (%) | |
module efficiency at the reference temperature (%) | |
Hydro turbine efficiency (%) | |
Density of water (kg/m3) |
References
- United Nations. Theme Report on Energy Transition. 2021. Available online: https://www.un.org/sites/un2.un.org/files/2021-twg_2-062321.pdf (accessed on 10 December 2023).
- Trapani, K.; Redón Santafé, M. A review of floating photovoltaic installations: 2007–2013. Prog. Photovolt. Res. Appl. 2015, 23, 524–532. [Google Scholar] [CrossRef]
- World Bank Group. Where Sun Meets Water: Floating Solar Market Report. 2018. Available online: https://www.worldbank.org/en/topic/energy/publication/where-sun-meets-water (accessed on 10 December 2023).
- IBERDROLA. Available online: https://www.iberdrola.com/innovation/floating-photovoltaic (accessed on 10 December 2023).
- El Hammoumi, A.; Chalh, V.; Allouhi, A.; Motahhir, S.; El Ghzizal, A.; Derouich, A. Design and construction of a test bench to investigate the potential of floating PV systems. J. Clean. Prod. 2021, 278, 123917. [Google Scholar] [CrossRef]
- Liu, H.; Krishna, V.; Lun Leung, J.; Reindl, T.; Zhao, L. Field experience and performance analysis of floating PV technologies in the tropics. Prog. Photovolt. Res. Appl. 2018, 26, 957–967. [Google Scholar] [CrossRef]
- Farfan, J.; Breyer, C. Combining floating solar photovoltaic power plants and hydropower reservoirs: A virtual battery of great global potential. Energy Proccedia 2018, 155, 403–411. [Google Scholar] [CrossRef]
- Agrawal, K.K.; Jha, S.K.; Mittal, R.K.; Vashishtha, S. Assessment of floating solar PV (FSPV) potential and water conservation: Case study on Rajghat Dam in Uttar Pradesh, India. Energy Sustain. 2022, 66, 287–295. [Google Scholar] [CrossRef]
- IEA. Hydroelectricity. International Energy Agency. 2022. Available online: https://www.iea.org/reports/hydroelectricity (accessed on 10 December 2023).
- EMBER. Available online: https://ember-climate.org/data-catalogue/yearly-electricity-data/ (accessed on 10 December 2023).
- Farrar, L.W.; Bahaj, A.S.; James, P.; Anwar, A.; Amdar, N. Floating solar PV to reduce water evaporation in water stressed regions and powering water pumping: Case study Jordan. Energy Convers. Manag. 2022, 260, 115598. [Google Scholar] [CrossRef]
- Melvin, G.K.X. Experimental Study of the Effect of Floating Solar Panels on Reducing Evaporation in Singapore Reservoirs. 2015. Available online: https://cpb-us-w2.wpmucdn.com/blog.nus.edu.sg/dist/b/4438/files/2015/04/FYP-Final-report-14ijhop.pdf (accessed on 10 December 2023).
- Sanseverino, I.; Conduto, D.; Pozzoli, L.; Dobricic, S.; Lettieri, T. Algal Bloom and Its Economic Impact, European Commission, Joint Research Centre. 2016. Available online: https://op.europa.eu/en/publication-detail/-/publication/4d384d1b-1804-11e6-ba9a-01aa75ed71a1/language-en (accessed on 30 June 2023).
- Olkkonen, V.; Haaskjold, K.; Sommer Klyve, Ø.; Skartlien, R. Techno-economic feasibility of hybrid hydro-FPV systems in Sub-Saharan Africa under different market conditions. Renew. Energy 2023, 215, 118981. [Google Scholar] [CrossRef]
- Barbón, A.; Gutiérrez, A.; Bayón, L.; Bayón-Cueli, C.; Aparicio-Bermejo, J. Economic analysis of a pumped hydroelectric storage-integrated floating PV system in the day-ahead Iberian electricity market. Energies 2023, 16, 1705. [Google Scholar] [CrossRef]
- Mamatha, G.; Kulkarni, P.S. Assessment of floating solar photovoltaic potential in India’s existing hydropower reservoirs. Energy Sustain. Dev. 2022, 69, 64–76. [Google Scholar] [CrossRef]
- Gonzalez Sanchez, R.; Kougias, I.; Moner-Girona, M.; Fahl, F.; Jäger-Waldau, A. Assessment of floating solar photovoltaics potential in existing hydropower reservoirs in Africa. Renew. Energy 2021, 169, 687–699. [Google Scholar] [CrossRef]
- Shan, R.; Sasthav, C.; Wang, X.; Lima, L.M.M. Complementary relationship between small-hydropower and increasing penetration of solar photovoltaics: Evidence from CAISO. Renew. Energy 2020, 155, 1139–1146. [Google Scholar] [CrossRef]
- Kakoulaki, G.; Gonzalez Sanchez, R.; Gracia Amillo, A.; Szabo, S.; De Felice, M.; Farinosi, F.; De Felice, L.; Bisselink, B.; Seliger, R.; Kougias, I.; et al. Benefits of pairing floating solar photovoltaics with hydropower reservoirs in Europe. Renew. Sustain. Energy Rev. 2023, 171, 112989. [Google Scholar] [CrossRef]
- Barbón, A.; Aparicio-Bermejo, J.; Bayón, L.; Georgious, R. Floating photovoltaic systems coupled with pumped hydroplants under day-ahead electricity market conditions: Parametric analysis. Electronics 2023, 12, 2250. [Google Scholar] [CrossRef]
- REE. Available online: https://www.sistemaelectrico-ree.es/en/spanish-electricity-system/generation/installed-capacity (accessed on 10 December 2023).
- MITECO. Available online: https://www.miteco.gob.es/en/prensa/pniec.html (accessed on 10 December 2023).
- Barbón, A.; Fortuny Ayuso, P.; Bayón, L.; Silva, C.A. A comparative study between racking systems for photovoltaic power systems. Renew. Energy 2021, 180, 424–437. [Google Scholar] [CrossRef]
- Water Power Magazine. Available online: https://www.waterpowermagazine.com/search/?q%5B%5D=Pumping (accessed on 10 December 2023).
- ENDESA. Available online: https://www.endesa.com/en/the-e-face/renewable-energies/floating-solar-plants (accessed on 10 December 2023).
- EDP. Available online: https://www.edp.com/en/floating-solar-pannels (accessed on 10 December 2023).
- Aihara, R.; Yokoyama, A.; Nomiyama, F.; Kosugi, N. Optimal operation scheduling of pumped storage hydro power plant in power system with a large penetration of photovoltaic generation using genetic algorithm. In Proceedings of the IEEE Trondheim PowerTech, Trondheim, Norway, 19–23 June 2011. [Google Scholar]
- Bayón, L.; Grau, J.M.; Ruiz, M.M.; Suárez, P.M. Mathematical modelling of the combined optimization of a pumped-storage hydro-plant and a wind park. Math. Comput. Model. 2013, 57, 2024–2028. [Google Scholar] [CrossRef]
- Bayón-Cueli, C.; Barbón, A.; Fernández-Conde, A.; Bayón, L. Optimal distribution of PV modules on roofs with limited space. In Proceedings of the 2021 IEEE International Conference on Environmental and Electrical Engineering (EEEIC2021), Bari, Italy, 7–10 September 2021; pp. 50–55. [Google Scholar]
- Osborne, M. Sungrow Targets Teading Role in Supply of Floating Solar Systems to Booming Market. Available online: https://www.pv-tech.org/sungrow-targets-leading-role-in-supply-of-floating-solar-systems-to-booming/ (accessed on 10 December 2023).
- Sahu, A.; Yadav, N.; Sudhakar, K. Floating photovoltaic power plant: A review. Renew. Sustain. Energy Rev. 2016, 66, 815–824. [Google Scholar] [CrossRef]
- Barbón, A.; Bayón-Cueli, C.; Bayón, L.; Carreira-Fontao, V. A methodology for an optimal design of ground-mounted photovoltaic power plants. Appl. Energy 2022, 314, 118881. [Google Scholar] [CrossRef]
- Barbón, A.; Ghodbane, M.; Bayón, L.; Said, Z. A general algorithm for the optimization of photovoltaic modules layout on irregular rooftop shapes. J. Clean. Prod. 2022, 365, 132774. [Google Scholar] [CrossRef]
- ISIFLOATING. Available online: https://www.isifloating.com/en/solar-flotante-isifloating-by-isigenere-english/ (accessed on 10 December 2023).
- CIEL. Available online: https://ciel-et-terre.net/solutions/products/ (accessed on 10 December 2023).
- IINTECH. Available online: https://intechcleanenergy.com/floating-panels.php (accessed on 10 December 2023).
- ENFSOLAR. Available online: https://es.enfsolar.com/pv/panel-datasheet/crystalline/50794 (accessed on 10 December 2023).
- Barbón, A.; Bayón-Cueli, C.; Bayón, L.; Rodríguez-Suanzes, C. Analysis of the tilt and azimuth angles of photovoltaic systems in non-ideal positions for urban applications. Appl. Energy 2022, 305, 117802. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes, 4th ed.; John Wiley & Sons: New York, NY, USA, 2013. [Google Scholar]
- Oliveira-Pinto, S.; Stokkermans, J. Assessment of the potential of different floating solar technologies–Overview and analysis of different case studies. Energy Convers. Manag. 2020, 211, 112747. [Google Scholar] [CrossRef]
- Ghigo, A.; Faraggiana, E.; Sirigu, M.; Mattiazzo, G.; Bracco, G. Design and analysis of a floating photovoltaic system for offshore installation: The case study of Lampedusa. Energies 2022, 15, 8804. [Google Scholar] [CrossRef]
- METEONORM. Available online: https://meteonorm.com/en/ (accessed on 10 December 2023).
- Joint Research Centre (JRC). PVGIS. 2022. Available online: http://re.jrc.ec.europa.eu/pvg_tools/\protect\@normalcr\relaxen/tools.html#PVP (accessed on 10 December 2023).
- SOLCAST. Available online: https://solcast.com/ (accessed on 10 December 2023).
- PVsyst. Available online: https://www.pvsyst.com/ (accessed on 10 December 2023).
- Sacid Endiz, M.; Emre Coşgun, A. Assessing the potential of solar power generation in Turkey: A PESTLE analysis and comparative study of promising regions using PVsyst software. Solar Energy 2023, 266, 112153. [Google Scholar] [CrossRef]
- Huda, A.; Kurniawan, I.; Fahmi Purba, K.; Ichwani, R.; Aryansyah; Fionasari, R. Techno-economic assessment of residential and farm-based photovoltaic systems. Renew. Energy 2023, 222, 119886. [Google Scholar] [CrossRef]
- Rios, R.; Duarte, S. Selection of ideal sites for the development of large-scale solar photovoltaic projects through Analytical Hierarchical Process—Geographic information systems (AHP-GIS) in Peru. Renew. Sustain. Energy Rev. 2021, 149, 111310. [Google Scholar] [CrossRef]
- Giamalaki, M.; Tsoutsos, T. Sustainable siting of solar power installations in Mediterranean using a GIS/AHP approach. Renew. Energy 2019, 141, 64–75. [Google Scholar] [CrossRef]
- SOLARGIS. Available online: https://solargis.com/maps-and-gis-data/download/world (accessed on 10 December 2023).
- Aly, A.; Solvang Jensen, S.; Branth Pedersen, A. Solar power potential of Tanzania: Identifying CSP and PV hot spots through a GIS multicriteria decision making analysis. Renew. Energy 2017, 113, 159–175. [Google Scholar] [CrossRef]
- Alami Merrouni, A.; Elwali Elalaoui, F.; Mezrhab, A.; Mezrhab, A.; Ghennioui, A. Large scale PV sites selection by combining GIS and Analytical Hierarchy Process. Case study: Eastern Morocco. Renew. Energy 2018, 119, 863–873. [Google Scholar] [CrossRef]
- Yushchenko, A.; de Bono, A.; Chatenoux, B.; Kumar Patel, M.; Ray, N. GIS-based assessment of photovoltaic (PV) and concentrated solar power (CSP) generation potential in West Africa. Renew. Sustain. Energy Rev. 2018, 81, 2088–2103. [Google Scholar] [CrossRef]
- Evans, D.L. Simplified method for predicting photovoltaic array output. Solar Energy 1981, 27, 555–560. [Google Scholar] [CrossRef]
- Dutra Silva, D.; Marson, V.; Rodrigues de Souza, R.; Diehl de Oliveira, J.; Campos Silva, J.B.; Cardoso, E.M. A new predictive model for a photovoltaic module’s surface temperature. Energy Rep. 2022, 8, 15206–15220. [Google Scholar] [CrossRef]
- Lawrence Kamuyu, W.C.; Rok Lim, J.; Sub Won, C.; Keun Ahn, H. Prediction model of photovoltaic module temperature for power performance of floating PVs. Energies 2018, 11, 447. [Google Scholar] [CrossRef]
- Mattei, M.; Notton, G.; Cristofari, C.; Muselli, M.; Poggi, P. Calculation of the polycrystalline PV module temperature using a simple method of energy balance. Renew. Energy 2006, 31, 553–567. [Google Scholar] [CrossRef]
- Choi, Y.K. A study on power generation analysis of floating PV system considering environmental impact. Int. J. Softw. Eng. Appl. 2014, 8, 75–84. [Google Scholar] [CrossRef]
- SNIRH. Available online: https://snirh.apambiente.pt/index.php?idMain=1&idItem=1.3\protect\@normalcr\relax&sbaciaid=&szonas=&salbufeirasimbolo=03J/03A&n_mesBOLETIM=01&n_anoH= (accessed on 10 December 2023).
- Bhattacharjee, S.; Nayak, P.K. PV-pumped energy storage option for convalescing performance of hydroelectric station under declining precipitation trend. Renew. Energy 2019, 135, 288–302. [Google Scholar] [CrossRef]
- GOOGLE EARTH. Available online: https://www.google.es/intl/es/earth/index.html (accessed on 10 December 2023).
Id | PHS Plant Name | Upper Reservoir Name | Latitude | Longitude | Altitude |
---|---|---|---|---|---|
(°) | (°) | (m) | |||
1 | La Muela I | Depósito CH La Muela | 39.23240 °N | 0.93070 °W | 800 |
2 | La Muela II | Depósito CH La Muela | 39.23240 °N | 0.93070 °W | 800 |
3 | Villarino | La Almendra | 41.24800 °N | 6.26160 °W | 700 |
4 | Tajo de la Encantada | Valdecañas | 39.82033 °N | 5.39290 °W | 210 |
5 | Aguayo | Mediajo | 43.09292 °N | 4.02090 °W | 1100 |
6 | Sallente | Estany-Gento | 42.51086 °N | 1.00253 °E | 2140 |
7 | Aldeadávila II | Rio Duero | 41.21200 °N | 6.68400 °W | 339 |
8 | Conso | Cenza | 42.19739 °N | 7.24730 °W | 1400 |
9 | Moralets | Llauset | 42.58352 °N | 0.68901 °E | 2200 |
10 | Valdecañas | Valdecañas | 39.80103 °N | 5.41650 °W | 400 |
11 | Guillena | Embalse superior de Guillena | 37.64086 °N | 6.10379 °W | 279 |
12 | Bolarque II | Bujeda | 40.23929 °N | 2.83330 °W | 898 |
13 | Tanes | Tanes | 43.21961 °N | 5.42690 °W | 485 |
14 | Torrejón | Torrejón-Tajo | 39.83206 °N | 5.98450 °W | 245 |
15 | Valparaíso | Valparaíso | 41.99310 °N | 6.27530 °W | 830 |
16 | Gabriel y Galán | Gabriel y Galán | 40.24600 °N | 6.13600 °W | 372 |
17 | Montamara | Tavascan | 42.63745 °N | 1.25119 °E | 1110 |
18 | Soutelo | Cenza | 42.19601 °N | 7.24730 °W | 1307 |
19 | Bao-Puente Bibey | Bao | 42.20300 °N | 7.14100 °W | 646 |
20 | Guijo de Granadilla | Guijo de Granadilla | 40.18078 °N | 6.14220 °W | 320 |
21 | Santiago de Jares | Santiago | 42.40521 °N | 7.07500 °W | 306 |
22 | Pintado | El Pintado | 37.98961 °N | 5.95380 °W | 322 |
23 | IP | Ibon de IP | 42.72200 °N | 0.46100 °W | 2101 |
24 | Urdiceto | Ibon de Urdiceto | 42.66718 °N | 0.27988 °E | 2367 |
25 | Gobantes | Conde de Guadalhorce | 36.93358 °N | 4.80415 °W | 332 |
Global Horizontal Irradiation | Horizontal Diffuse Irradiation | Ambient Temperature | Energy Injected into Grid | |
---|---|---|---|---|
(kWh/m2) | (kWh/m2) | (°C) | (kWh/m2) | |
January | 64.70 | 29.86 | 7.81 | 12.46 |
February | 88.60 | 32.18 | 8.95 | 17.28 |
March | 136.90 | 48.41 | 11.97 | 26.28 |
April | 166.20 | 57.80 | 14.10 | 31.40 |
May | 208.10 | 71.85 | 18.67 | 30.13 |
June | 228.90 | 66.57 | 23.47 | 40.65 |
July | 246.20 | 53.46 | 26.52 | 43.18 |
August | 216.50 | 49.21 | 26.74 | 38.49 |
September | 157.30 | 50.94 | 22.51 | 28.91 |
October | 113.80 | 41.49 | 17.47 | 21.53 |
November | 70.60 | 25.20 | 11.25 | 13.47 |
December | 56.50 | 23.58 | 8.46 | 10.77 |
Year | 1754.30 | 550.55 | 16.54 | 322.54 |
Id | Name | Power | Head | Flow Rate | Upper Reservoir | ||
---|---|---|---|---|---|---|---|
(MW) | (MW) | (m) | (m3/s) | (hm3) | (ha) | ||
1 | La Muela I | 634 | 549 | 500 | 145 | 23 | 115 |
2 | La Muela II | 880 | 744 | 500 | 187 | 23 | 115 |
3 | Villarino | 829.75 | 728 | 400 | 232 | 2649 | 8650 |
4 | Tajo de la Encantada | 360 | 360 | 55 | 108.8 | 3162 | 1493 |
5 | Aguayo | 360.4 | 334.4 | 341 | 30 | 10 | 44 |
6 | Sallente | 446 | 468 | 400.7 | 125 | 3 | 25.8 |
7 | Aldeadávila II | 428 | 400 | 137.83 | 350 | 114.3 | 268 |
8 | Conso | 228 | 207 | 230 | 120 | 39 | 238 |
9 | Moralets | 221.4 | 227.3 | 800 | 30.4 | 17 | 45 |
10 | Valdecañas | 225 | 225 | 75 | 390 | 1446 | 7300 |
11 | Guillena | 210 | 210 | 244 | 103.2 | 2 | 22 |
12 | Bolarque II | 208 | 205.6 | 270 | 269.5 | 5 | 63 |
13 | Tanes | 127.17 | 133 | 105 | 119.5 | 25.3 | 143 |
14 | Torrejón | 129.6 | 129 | 47.7 | 328 | 176 | 1041 |
15 | Valparaíso | 60 | 35 | 49 | 110 | 162 | 1223 |
16 | Gabriel y Galán | 110 | 100 | 60 | 230 | 911 | 4683 |
17 | Montamara | 90 | 90 | 630 | 16 | 1 | 8 |
18 | Soutelo | 206.16 | 77 | 606.5 | 21.3 | 39 | 238 |
19 | Bao-Puente Bibey | 384.8 | 64 | 360 | 90.8 | 238 | 820 |
20 | Guijo de Granadilla | 52.8 | 52 | 25 | 240 | 13 | 124 |
21 | Santiago de Jares | 51.2 | 51 | 216 | 28 | 1 | 50 |
22 | Pintado | 14 | 14 | 197.5 | 21.6 | 215 | 1050 |
23 | IP | 88.85 | 99 | 1000 | 9.9 | 5.3 | 27 |
24 | Urdiceto | 7.1 | 7 | 426 | 2 | 5 | 32 |
25 | Gobantes | 3.44 | 3 | 42.5 | 13 | 66 | 546 |
Id | Name | Electricity Production | |||
---|---|---|---|---|---|
(kWh/m2) | (°C) | (°C) | (kWh/m2) | ||
1 | La Muela I | 1705.0 | 14.44 | 39.26 | 316.04 |
2 | La Muela II | 1705.0 | 14.44 | 39.26 | 316.04 |
3 | Villarino | 1690.8 | 12.46 | 36.68 | 315.02 |
4 | Tajo de la Encantada | 1735.0 | 17.03 | 42.89 | 318.44 |
5 | Aguayo | 1360.6 | 11.55 | 31.04 | 254.11 |
6 | Sallente | 1670.3 | 4.41 | 25.34 | 310.20 |
7 | Aldeadávila II | 1692.5 | 13.58 | 30.14 | 176.31 |
8 | Conso | 1564.0 | 11.33 | 33.61 | 291.58 |
9 | Moralets | 1651.6 | 4.13 | 21.15 | 245.28 |
10 | Valdecañas | 1735.6 | 16.91 | 37.37 | 318.03 |
11 | Guillena | 1827.0 | 19.23 | 41.60 | 333.79 |
12 | Bolarque II | 1706.6 | 14.42 | 34.57 | 314.20 |
13 | Tanes | 1258.8 | 12.89 | 27.17 | 199.16 |
14 | Torrejón | 1748.5 | 16.92 | 37.28 | 315.97 |
15 | Valparaíso | 1655.3 | 12.41 | 32.83 | 308.41 |
16 | Gabriel y Galán | 1754.4 | 16.54 | 34.51 | 322.54 |
17 | Montamara | 1645.1 | 10.98 | 29.09 | 258.22 |
18 | Soutelo | 1563.9 | 9.94 | 28.11 | 292.17 |
19 | Bao-Puente Bibey | 1574.2 | 12.81 | 30.51 | 288.31 |
20 | Guijo de Granadilla | 1753.7 | 16.48 | 36.82 | 321.63 |
21 | Santiago de Jares | 1548.5 | 13.44 | 30.89 | 278.90 |
22 | Pintado | 1828.8 | 18.14 | 39.41 | 330.50 |
23 | IP | 1557.0 | 4.80 | 20.40 | 246.50 |
24 | Urdiceto | 1606.8 | 3.37 | 20.54 | 302.27 |
25 | Gobantes | 1808.9 | 17.36 | 38.93 | 327.58 |
Id | Name | Assessment Indicators | |||||
---|---|---|---|---|---|---|---|
GHIR | EER | ARR | PAR | PVR | APR | ||
1 | La Muela I | NeI | NeI | NI | NI | NI | NI |
2 | La Muela II | NeI | NeI | NI | NI | NI | NI |
3 | Villarino | NeI | NeI | PI | PI | NI | PI |
4 | Tajo de la Encantada | NeI | NeI | PI | NI | NI | PI |
5 | Aguayo | NI | PI | NI | NI | NI | NI |
6 | Sallente | NeI | PI | NI | NI | NI | NI |
7 | Aldeadávila II | NeI | PI | NI | NI | NI | NI |
8 | Conso | NeI | NeI | PI | NI | NI | PI |
9 | Moralets | NeI | PI | NI | NI | NI | NI |
10 | Valdecañas | NeI | NeI | NI | PI | NI | PI |
11 | Guillena | PI | NeI | NI | NI | NI | NI |
12 | Bolarque II | NeI | NeI | NI | NI | NI | NI |
13 | Tanes | NI | PI | PI | NI | NI | PI |
14 | Torrejón | NeI | NeI | PI | PI | NI | PI |
15 | Valparaíso | NeI | NeI | PI | PI | NI | PI |
16 | Gabriel y Galán | NeI | NeI | PI | PI | NI | PI |
17 | Montamara | NeI | PI | NI | NI | NI | NI |
18 | Soutelo | NeI | PI | PI | NI | NI | PI |
19 | Bao-Puente Bibey | NeI | PI | PI | NI | NI | PI |
20 | Guijo de Granadilla | NeI | NeI | PI | PI | NI | PI |
21 | Santiago de Jares | NeI | PI | PI | NI | NI | PI |
22 | Pintado | PI | NeI | PI | PI | NI | PI |
23 | IP | NeI | PI | NI | NI | NI | NI |
24 | Urdiceto | NeI | PI | PI | NI | NI | PI |
25 | Gobantes | PI | NeI | PI | PI | NI | PI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbón, A.; Rodríguez-Fernández, C.; Bayón, L.; Aparicio-Bermejo, J. Evaluating the Potential of Floating Photovoltaic Plants in Pumped Hydropower Reservoirs in Spain. Electronics 2024, 13, 832. https://doi.org/10.3390/electronics13050832
Barbón A, Rodríguez-Fernández C, Bayón L, Aparicio-Bermejo J. Evaluating the Potential of Floating Photovoltaic Plants in Pumped Hydropower Reservoirs in Spain. Electronics. 2024; 13(5):832. https://doi.org/10.3390/electronics13050832
Chicago/Turabian StyleBarbón, Arsenio, Claudia Rodríguez-Fernández, Luis Bayón, and Javier Aparicio-Bermejo. 2024. "Evaluating the Potential of Floating Photovoltaic Plants in Pumped Hydropower Reservoirs in Spain" Electronics 13, no. 5: 832. https://doi.org/10.3390/electronics13050832
APA StyleBarbón, A., Rodríguez-Fernández, C., Bayón, L., & Aparicio-Bermejo, J. (2024). Evaluating the Potential of Floating Photovoltaic Plants in Pumped Hydropower Reservoirs in Spain. Electronics, 13(5), 832. https://doi.org/10.3390/electronics13050832