Light Field Visualization for Training and Education: A Review
Abstract
:1. Introduction
2. Considered 3D Visualization Technologies
2.1. Stereoscopic 3D
2.2. Virtual Reality
2.3. Augmented Reality
2.4. Glasses-Free 3D
2.5. State of the Considered Technologies in Education
3. Preschool and Elementary School Education
4. Middle and High School Education
5. Higher Education
6. Specialized Training
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3DVT | 3D Visual Technology |
AI | Artificial Intelligence |
AR | Augmented Reality |
CNN | Convolutional Neural Network |
FATIH | The Action to Increase Opportunity and Improve Technology |
FOV | Field Of View |
FP | Full Parallax |
HCI | Human–Computer Interface |
HDR | High Dynamic Range |
HMD | Head-Mounted Display |
HOP | Horizontal-Only Parallax |
HUD | Heads-Up Display |
HVS | Human Visual System |
I3D | Interactive 3D |
IB | Interactive Board |
Infitec | Interference Filter Technique |
KCL | King’s College London |
KPI | Key Performance Indicator |
LF | Light Field |
LFD | Light Field Display |
METAL | Mixed Reality Sharing Platform |
MIS | Minimally Invasive Surgery |
OR | Operation Room |
PBL | Problem-Based Learning |
QoE | Quality of Experience |
ROI | Region Of Interest |
S3D | Stereoscopic 3D |
SDK | Software Development Kit |
SMART | System of Augmented Reality for Teaching |
SOP | State Of Polarization |
V2X | Vehicle-to-Everything |
VAH | Virtual Anatomy and Histology |
VOP | Vertical-Only Parallax |
VR | Virtual Reality |
VVA | Valid Viewing Area |
WoS | Web of Science |
References
- Fominykh, M.; Prasolova-Førland, E. Educational visualizations in 3D collaborative virtual environments: A methodology. Interact. Technol. Smart Educ. 2012, 9, 33–45. [Google Scholar] [CrossRef]
- Kavanagh, S.; Luxton-Reilly, A.; Wuensche, B.; Plimmer, B. A systematic review of virtual reality in education. Themes Sci. Technol. Educ. 2017, 10, 85–119. [Google Scholar]
- Akçayır, M.; Akçayır, G. Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educ. Res. Rev. 2017, 20, 1–11. [Google Scholar] [CrossRef]
- Ghosh, A.; Brown, V.; Huang, S. Education Applications of 3D Technology. In Proceedings of the Society for Information Technology & Teacher Education International Conference, Association for the Advancement of Computing in Education (AACE), Washington, DC, USA, 26 March 2018; pp. 426–436. [Google Scholar]
- Shibata, T. Virtual reality in education: How schools use vr in classrooms. In Proceedings of the Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018) Volume X: Auditory and Vocal Ergonomics, Visual Ergonomics, Psychophysiology in Ergonomics, Ergonomics in Advanced Imaging 20, Florence, Italy, 26–30 August 2018; Springer: Berlin/Heidelberg, Germany, 2019; pp. 423–425. [Google Scholar]
- Lee, K. Augmented reality in education and training. TechTrends 2012, 56, 13–21. [Google Scholar] [CrossRef]
- Freina, L.; Ott, M. A literature review on immersive virtual reality in education: State of the art and perspectives. In Proceedings of the the International Scientific Conference Elearning and Software for Education, Madrid, Spain, 26–29 June 2015; Volume 1. [Google Scholar]
- Zhou, C.; Li, H.; Bian, Y. Identifying the optimal 3d display technology for hands-on virtual experiential learning: A comparison study. IEEE Access 2020, 8, 73791–73803. [Google Scholar] [CrossRef]
- Rojas-Sánchez, M.A.; Palos-Sánchez, P.R.; Folgado-Fernández, J.A. Systematic literature review and bibliometric analysis on virtual reality and education. Educ. Inf. Technol. 2023, 28, 155–192. [Google Scholar] [CrossRef]
- Kara, P.A.; Tamboli, R.R.; Doronin, O.; Cserkaszky, A.; Barsi, A.; Nagy, Z.; Martini, M.G.; Simon, A. The key performance indicators of projection-based light field visualization. J. Inf. Disp. 2019, 20, 81–93. [Google Scholar] [CrossRef]
- Marougkas, A.; Troussas, C.; Krouska, A.; Sgouropoulou, C. Virtual reality in education: A review of learning theories, approaches and methodologies for the last decade. Electronics 2023, 12, 2832. [Google Scholar] [CrossRef]
- Ponce, C.R.; Born, R.T. Stereopsis. Curr. Biol. 2008, 18, R845–R850. [Google Scholar] [CrossRef] [PubMed]
- McIntire, J.P.; Havig, P.R.; Geiselman, E.E. Stereoscopic 3D displays and human performance: A comprehensive review. Displays 2014, 35, 18–26. [Google Scholar] [CrossRef]
- Ideses, I.; Yaroslavsky, L. New methods to produce high quality color anaglyphs for 3-D visualization. In Proceedings of the Image Analysis and Recognition: International Conference, ICIAR 2004, Proceedings, Part II 1, Porto, Portugal, 29 September–1 October 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 273–280. [Google Scholar]
- Ideses, I.; Yaroslavsky, L. Three methods that improve the visual quality of colour anaglyphs. J. Opt. Pure Appl. Opt. 2005, 7, 755. [Google Scholar] [CrossRef]
- Sorensen, S.E.B.; Hansen, P.S.; Sorensen, N.L. Method for Recording and Viewing Stereoscopic Images in Color Using Multichrome Filters. U.S. Patent 6,687,003, 3 February 2004. [Google Scholar]
- Krüger, W.; Bohn, C.A.; Fröhlich, B.; Schüth, H.; Strauss, W.; Wesche, G. The responsive workbench: A virtual work environment. Computer 1995, 28, 42–48. [Google Scholar] [CrossRef]
- Chinnock, C. 3D coming home in 2010. 3D@Home Consort. Publ. 2009. Available online: https://www.academia.edu/89679714/State_of_the_Art_in_Stereoscopic_and_Autostereoscopic_Displays?uc-sb-sw=58938770 (accessed on 22 February 2024).
- Urey, H.; Chellappan, K.V.; Erden, E.; Surman, P. State of the art in stereoscopic and autostereoscopic displays. Proc. IEEE 2011, 99, 540–555. [Google Scholar] [CrossRef]
- Permana, D. Using stereoscopic 3D images for effective learning in primary school. Int. J. Educ. Vocat. Stud. 2019, 1, 411–415. [Google Scholar] [CrossRef]
- Ferdig, R.; Blank, J.; Kratcoski, A.; Clements, R. Using stereoscopy to teach complex biological concepts. Adv. Physiol. Educ. 2015, 39, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Shibata, T.; Ishihara, Y.; Sato, K.; Ikejiri, R. Utilization of stereoscopic 3D images in elementary school social studies classes. Electron. Imaging 2017, 2017, 167–172. [Google Scholar] [CrossRef]
- Hruskocy, C.; Foster, S. Exploring Stereoscopic 3D Technology in Teaching and Learning. In Proceedings of the EdMedia+ Innovate Learning, Association for the Advancement of Computing in Education (AACE), Victoria, BC, Canada, 24 June 2013; pp. 213–222. [Google Scholar]
- Rakowski, R.K. The effect of stereoscopic three-dimensional images on vocabulary learning. Contemp. Educ. Technol. 2019, 10, 324–337. [Google Scholar] [CrossRef]
- van Beurden, M.H.; IJsselsteijn, W.A.; Juola, J.F. Effectiveness of stereoscopic displays in medicine: A review. 3D Res. 2012, 3, 3. [Google Scholar] [CrossRef] [PubMed]
- Held, R.T.; Hui, T.T. A guide to stereoscopic 3D displays in medicine. Acad. Radiol. 2011, 18, 1035–1048. [Google Scholar] [CrossRef]
- Brown, P.M.; Hamilton, N.M.; Denison, A.R. A novel 3D stereoscopic anatomy tutorial. Clin. Teach. 2012, 9, 50–53. [Google Scholar] [CrossRef]
- Goodarzi, A.; Monti, S.; Lee, D.; Girgis, F. Effect of stereoscopic anaglyphic 3-dimensional video didactics on learning neuroanatomy. World Neurosurg. 2017, 107, 35–39. [Google Scholar] [CrossRef]
- Bernard, F.; Richard, P.; Kahn, A.; Fournier, H.D. Does 3D stereoscopy support anatomical education? Surg. Radiol. Anat. 2020, 42, 843–852. [Google Scholar] [CrossRef]
- Bogomolova, K.; Hierck, B.P.; Looijen, A.E.; Pilon, J.N.; Putter, H.; Wainman, B.; Hovius, S.E.; van der Hage, J.A. Stereoscopic three-dimensional visualisation technology in anatomy learning: A meta-analysis. Med. Educ. 2021, 55, 317–327. [Google Scholar] [CrossRef]
- Guttentag, D.A. Virtual reality: Applications and implications for tourism. Tour. Manag. 2010, 31, 637–651. [Google Scholar] [CrossRef]
- Brey, P. Virtual reality and computer simulation. In The Handbook of Information and Computer Ethics; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 361–384. [Google Scholar] [CrossRef]
- Shen, C.W.; Ho, J.T.; Ly, P.T.M.; Kuo, T.C. Behavioural intentions of using virtual reality in learning: Perspectives of acceptance of information technology and learning style. Virtual Real. 2019, 23, 313–324. [Google Scholar] [CrossRef]
- Shen, H.; Zhang, J.; Yang, B.; Jia, B. Development of an educational virtual reality training system for marine engineers. Comput. Appl. Eng. Educ. 2019, 27, 580–602. [Google Scholar] [CrossRef]
- Román-Ibáñez, V.; Pujol-López, F.A.; Mora-Mora, H.; Pertegal-Felices, M.L.; Jimeno-Morenilla, A. A low-cost immersive virtual reality system for teaching robotic manipulators programming. Sustainability 2018, 10, 1102. [Google Scholar] [CrossRef]
- Barbalios, N.; Ioannidou, I.; Tzionas, P.; Paraskeuopoulos, S. A model supported interactive virtual environment for natural resource sharing in environmental education. Comput. Educ. 2013, 62, 231–248. [Google Scholar] [CrossRef]
- Rahman, Y.; Asish, S.M.; Fisher, N.P.; Bruce, E.C.; Kulshreshth, A.K.; Borst, C.W. Exploring eye gaze visualization techniques for identifying distracted students in educational VR. In Proceedings of the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), IEEE, Atlanta, GA, USA, 22–26 March 2020; pp. 868–877. [Google Scholar]
- Thanyadit, S.; Punpongsanon, P.; Pong, T.C. ObserVAR: Visualization system for observing virtual reality users using augmented reality. In Proceedings of the 2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), IEEE, Beijing, China, 14–18 October 2019; pp. 258–268. [Google Scholar]
- Lövquist, E.; Shorten, G.; Aboulafia, A. Virtual reality-based medical training and assessment: The multidisciplinary relationship between clinicians, educators and developers. Med. Teach. 2012, 34, 59–64. [Google Scholar] [CrossRef]
- Falah, J.; Khan, S.; Alfalah, T.; Alfalah, S.F.; Chan, W.; Harrison, D.K.; Charissis, V. Virtual Reality medical training system for anatomy education. In Proceedings of the 2014 Science and Information Conference, IEEE, London, UK, 27–29 August 2014; pp. 752–758. [Google Scholar]
- Ferracani, A.; Pezzatini, D.; Del Bimbo, A. A natural and immersive virtual interface for the surgical safety checklist training. In Proceedings of the 2014 ACM International Workshop on Serious Games, Orlando, FL, USA, 7 November 2014; pp. 27–32. [Google Scholar]
- Azuma, R.T. A survey of augmented reality. Presence Teleoperators Virtual Environ. 1997, 6, 355–385. [Google Scholar] [CrossRef]
- Zhou, F.; Duh, H.B.L.; Billinghurst, M. Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR. In Proceedings of the 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality, IEEE, Cambridge, UK, 15–18 September 2008; pp. 193–202. [Google Scholar]
- Hugues, O.; Fuchs, P.; Nannipieri, O. New augmented reality taxonomy: Technologies and features of augmented environment. Handbook of Augmented Reality; Springer: Berlin, Germany, 2011; pp. 47–63. [Google Scholar]
- Azuma, R.; Baillot, Y.; Behringer, R.; Feiner, S.; Julier, S.; MacIntyre, B. Recent advances in augmented reality. IEEE Comput. Graph. Appl. 2001, 21, 34–47. [Google Scholar] [CrossRef]
- Kancherla, A.R.; Rolland, J.P.; Wright, D.L.; Burdea, G. A novel virtual reality tool for teaching dynamic 3D anatomy. In Proceedings of the International Conference on Computer Vision, Virtual Reality, and Robotics in Medicine, Nice, France, 3–6 April 1995; Springer: Berlin/Heidelberg, Germany, 1995; pp. 163–169. [Google Scholar]
- Garzón, J. An overview of twenty-five years of augmented reality in education. Multimodal Technol. Interact. 2021, 5, 37. [Google Scholar] [CrossRef]
- Van Krevelen, D.; Poelman, R. A survey of augmented reality technologies, applications and limitations. Int. J. Virtual Real. 2010, 9, 1–20. [Google Scholar] [CrossRef]
- Amin, D.; Govilkar, S. Comparative study of augmented reality SDKs. Int. J. Comput. Sci. Appl. 2015, 5, 11–26. [Google Scholar]
- Chen, Y.; Wang, Q.; Chen, H.; Song, X.; Tang, H.; Tian, M. An overview of augmented reality technology. Proc. J. Physics Conf. Ser. Iop Publ. 2019, 1237, 022082. [Google Scholar] [CrossRef]
- Garzón, J.; Pavón, J.; Baldiris, S. Systematic review and meta-analysis of augmented reality in educational settings. Virtual Real. 2019, 23, 447–459. [Google Scholar] [CrossRef]
- Garzón, J.; Baldiris, S.; Gutiérrez, J.; Pavón, J. How do pedagogical approaches affect the impact of augmented reality on education? A meta-analysis and research synthesis. Educ. Res. Rev. 2020, 31, 100334. [Google Scholar] [CrossRef]
- Rotter, P. Why did the 3D revolution fail?: The present and future of stereoscopy [commentary]. IEEE Technol. Soc. Mag. 2017, 36, 81–85. [Google Scholar] [CrossRef]
- Favalora, G.E. Volumetric 3D displays and application infrastructure. Computer 2005, 38, 37–44. [Google Scholar] [CrossRef]
- Blanche, P.A. Holography, and the future of 3D display. Light. Adv. Manuf. 2021, 2, 446–459. [Google Scholar] [CrossRef]
- Gabor, D. A new microscopic principle. Nature 1948, 161, 777–778. [Google Scholar] [CrossRef] [PubMed]
- Gabor, D. Microscopy by Reconstructed Wave-Fronts. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1949, 197, 454–487. [Google Scholar] [CrossRef]
- Leith, E.N.; Upatnieks, J. New techniques in wavefront reconstruction. J. Opt. Soc. Am 1961, 51, 1469–1473. [Google Scholar]
- Denisyuk, Y.N. On the reflection of optical properties of an object in a wave field of light scattered by it. Dokl. Akad. Nauk. SSSR 1962, 144, 1275–1278. [Google Scholar]
- Goodman, J.W. Digital Image Formation From Electronically Detected Holograms. In Proceedings of the Computerized Imaging Techniques. International Society for Optics and Photonics, SPIE, Washington, DC, USA, 1–2 January 1967; Volume 0010, pp. 176–181. [Google Scholar]
- Yaroslavsky, L.; Merzlyakov, N.S. Methods of Digital Holography; Consultants Bureau: New York, NY, USA, 1980. [Google Scholar]
- Kang, D.; Choi, J.H.; Hwang, H. Autostereoscopic 3D display system for 3D medical images. Appl. Sci. 2022, 12, 4288. [Google Scholar] [CrossRef]
- Xu, S.; Manders, C.M.; Tan, Y.O.; Song, P. 3D display for a classroom. In Proceedings of the 2010 International Conference on Educational and Information Technology, IEEE, Chongqing, China, 17–19 September 2010; Volume 2, pp. V2–316. [Google Scholar]
- Juan-Fernando, M.S.; Juan, M.C.; Mollá, R.; Vivó, R. Advanced displays and natural user interfaces to support learning. Interact. Learn. Environ. 2017, 25, 17–34. [Google Scholar]
- Wang, Q.; Wang, Q.H.; Liao, Y.C. Relationship between age differences and display parameters on visual comfort for autostereoscopic display. J. Soc. Inf. Disp. 2015, 23, 69–75. [Google Scholar] [CrossRef]
- Adhikarla, V.K.; Sodnik, J.; Szolgay, P.; Jakus, G. Exploring direct 3D interaction for full horizontal parallax light field displays using leap motion controller. Sensors 2015, 15, 8642–8663. [Google Scholar] [CrossRef]
- IEEE P3333.1.4-2022; Recommended Practice for the Quality Assessment of Light Field Imaging. IEEE Standards Association: Piscataway, NJ, USA, 2022. Available online: https://standards.ieee.org/ieee/3333.1.4/10873/ (accessed on 16 October 2023).
- Kara, P.A.; Barsi, A.; Tamboli, R.R.; Guindy, M.; Martini, M.G.; Balogh, T.; Simon, A. Recommendations on the viewing distance of light field displays. In Proceedings of the Digital Optical Technologies 2021, SPIE, Online Only, 21–26 June 2021; Volume 11788, pp. 166–179. [Google Scholar]
- Kara, P.A.; Tamboli, R.R.; Balogh, T.; Appina, B.; Simon, A. On the use-case-specific quality degradations of light field visualization. In Proceedings of the Novel Optical Systems, Methods, and Applications XXIV, SPIE, San Diego, CA, USA, 1–5 August 2021; Volume 11815, pp. 81–94. [Google Scholar]
- Salem, A.; Ibrahem, H.; Kang, H.S. Light Field Reconstruction Using Residual Networks on Raw Images. Sensors 2022, 22, 1956. [Google Scholar] [CrossRef]
- Luh Sukariasih, E.; Sahara, L.; Hariroh, L.; Fayanto, S. Studies the use of smartphone sensor for physics learning. Int. J. Sci. Technol. Res 2019, 8, 862–870. [Google Scholar]
- Shi, J.; Hua, J.; Zhou, F.; Yang, M.; Qiao, W. Augmented reality vector light field display with large viewing distance based on pixelated multilevel blazed gratings. Photonics 2021, 8, 337. [Google Scholar] [CrossRef]
- Pan, X.; Zheng, M.; Xu, X.; Campbell, A.G. Knowing your student: Targeted teaching decision support through asymmetric mixed reality collaborative learning. IEEE Access 2021, 9, 164742–164751. [Google Scholar] [CrossRef]
- Permana, D.; Sarwanto, S.; Rintayati, P. Integration of stereoscopic 3D images in primary school textbooks. Int. J. Multicult. Multireligious Underst. 2018, 5, 45–55. [Google Scholar] [CrossRef]
- Permana, D. Increasing the Mastery of Concept Science Learning Using Stereoscopic 3D Images. In Proceedings of the 2019 5th International Conference on Computing Engineering and Design (ICCED), IEEE, Singapore, 11–13 April 2019; pp. 1–4. [Google Scholar]
- Permana, D.; Utomo, U. Learning needs analysis: Thematic teaching book based on HOTS assisted with 3D stereoscopic images to improve critical thinking ability of elementary school students. Int. J. Educ. Vocat. Stud. 2021, 3, 116–123. [Google Scholar] [CrossRef]
- Yucelyigit, S.; Aral, N. The effects of three dimensional (3D) animated movies and interactive applications on development of visual perception of preschoolers. Egit. Bilim-Educ. Sci. 2016, 41, 255–271. [Google Scholar]
- Güler, O.; Savaş, S. Stereoscopic 3D teaching material usability analysis for interactive boards. Comput. Animat. Virtual Worlds 2022, 33, e2041. [Google Scholar] [CrossRef]
- Patterson, T.; Han, I. Learning to teach with virtual reality: Lessons from one elementary teacher. TechTrends 2019, 63, 463–469. [Google Scholar] [CrossRef]
- Johnson, A.; Moher, T.; Cho, Y.J.; Lin, Y.J.; Haas, D.; Kim, J. Augmenting elementary school education with VR. IEEE Comput. Graph. Appl. 2002, 22, 6–9. [Google Scholar] [CrossRef]
- Bolier, W.; Hürst, W.; Van Bommel, G.; Bosman, J.; Bosman, H. Drawing in a virtual 3D space-introducing VR drawing in elementary school art education. In Proceedings of the 26th ACM international conference on Multimedia, Seoul, Republic of Korea, 22–26 October 2018; pp. 337–345. [Google Scholar]
- Anggara, R.P.; Musa, P.; Lestari, S.; Widodo, S. Application of electronic learning by utilizing virtual reality (VR) and augmented reality (AR) methods in natural sciences subjects (IPA) in elementary school students grade 3. JTP-J. Teknol. Pendidik. 2021, 23, 58–69. [Google Scholar] [CrossRef]
- Xu, X.; Ke, F. Designing a virtual-reality-based, gamelike math learning environment. Am. J. Distance Educ. 2016, 30, 27–38. [Google Scholar] [CrossRef]
- Price, S.; Yiannoutsou, N.; Vezzoli, Y. Making the body tangible: Elementary geometry learning through VR. Digit. Exp. Math. Educ. 2020, 6, 213–232. [Google Scholar] [CrossRef]
- Chang, S.C.; Hsu, T.C.; Kuo, W.C.; Jong, M.S.Y. Effects of applying a VR-based two-tier test strategy to promote elementary students’ learning performance in a Geology class. Br. J. Educ. Technol. 2020, 51, 148–165. [Google Scholar] [CrossRef]
- Shim, J. Investigating the effectiveness of introducing virtual reality to elementary school students’ moral education. Comput. Educ. X Real. 2023, 2, 100010. [Google Scholar] [CrossRef]
- Cheng, K.H.; Tsai, C.C. A case study of immersive virtual field trips in an elementary classroom: Students’ learning experience and teacher-student interaction behaviors. Comput. Educ. 2019, 140, 103600. [Google Scholar] [CrossRef]
- Han, I. Immersive virtual field trips in education: A mixed-methods study on elementary students’ presence and perceived learning. Br. J. Educ. Technol. 2020, 51, 420–435. [Google Scholar] [CrossRef]
- Gaitatzes, A.; Christopoulos, D.; Roussou, M. Reviving the past: Cultural heritage meets virtual reality. In Proceedings of the 2001 conference on Virtual Reality, Archeology, and Cultural Heritage, Glyfada, Greece, 28–30 November 2001; pp. 103–110. [Google Scholar]
- Ainhoa, P.-V.; Pablo, A.; Diego, S. Medieval Vitoria-Gasteiz. In Proceedings of the 2012 Virtual Reality International Conference, Laval, France, 28–30 March 2012; pp. 1–2. [Google Scholar]
- Freitas, R.; Campos, P. SMART: A System of augmented reality for teaching 2nd grade students. In Proceedings of the People and Computers XXII Culture, Creativity, Interaction 22, Beale, Russell, 1–5 September 2008; pp. 27–30. [Google Scholar]
- BasriNadzeri, M.; Musa, M.; Meng, C.C.; Ismail, I.M. Teachers’ Perspectives on the Development of Augmented Reality Application in Geometry Topic for Elementary School. Int. J. Interact. Mob. Technol. 2023, 17, 38. [Google Scholar]
- Rusli, R.; Nalanda, D.A.; Tarmidi, A.D.V.; Suryaningrum, K.M.; Yunanda, R. Augmented reality for studying hands on the human body for elementary school students. Procedia Comput. Sci. 2023, 216, 237–244. [Google Scholar] [CrossRef]
- Hossain, M.J.; Ahmed, T. Augmented reality-based elementary level education for bengali character familiarization. SN Comput. Sci. 2021, 2, 1–9. [Google Scholar] [CrossRef]
- Poerwanti, J.I.S.; Budiharto, T. Utilization of Augmented Reality as an Interactive Media in The Learning of Fine Arts in Elementary School Education Students. Proc. Int. Conf. Elem. Educ. 2020, 2, 324–331. [Google Scholar]
- Danakorn Nincarean, A.; Phon, L.E.; Rahman, M.H.A.; Utama, N.I.; Ali, M.B.; Abdi Halim, N.; Kasim, S. The effect of augmented reality on spatial visualization ability of elementary school student. Int. J. Adv. Sci. Eng. Inf. Technol. 2019, 9, 624–629. [Google Scholar]
- Saputra, D.S.; Susilo, S.V.; Abidin, Y.; Mulyati, T. Augmented Reality In Science Learning For Elementary School Students. In Proceedings of the ICSST 2021: Proceedings of the 1st International Conference on Social, Science, and Technology, ICSST 2021, Tangerang, Indonesia, 25 November 2021; European Alliance for Innovation: Bratislava, Slovakia, 2022; p. 69. [Google Scholar]
- Zheng, M.; Pan, X.; Xu, X.; Campbell, A.G. METAL: Explorations into sharing 3D educational content across augmented reality headsets and light field displays. In Proceedings of the 2021 7th International Conference of the Immersive Learning Research Network (iLRN), IEEE, Eureka, CA, USA, 17 May–10 June 2021; pp. 1–6. [Google Scholar]
- Kara, P.A.; Kovacs, P.T.; Martini, M.G.; Barsi, A.; Lackner, K.; Balogh, T. Viva la resolution: The perceivable differences between image resolutions for light field displays. In Proceedings of the 5th ISCA/DEGA Workshop on Perceptual Quality of Systems (PQS), Berlin, Germany, 29–31 August 2016; pp. 107–111. [Google Scholar]
- Kara, P.A.; Cserkaszky, A.; Martini, M.G.; Barsi, A.; Bokor, L.; Balogh, T. Evaluation of the concept of dynamic adaptive streaming of light field video. IEEE Trans. Broadcast. 2018, 64, 407–421. [Google Scholar] [CrossRef]
- Simon, A.; Kara, P.A.; Guindy, M.; Qiu, X.; Szy, L.; Balogh, T. One step closer to a better experience: Analysis of the suitable viewing distance ranges of light field visualization usage contexts for observers with reduced visual capabilities. In Proceedings of the Novel Optical Systems, Methods, and Applications XXV, SPIE, San Diego, CA, USA, 3 October 2022; Volume 12216, pp. 133–143. [Google Scholar]
- Kara, P.A.; Cserkaszky, A.; Darukumalli, S.; Barsi, A.; Martini, M.G. On the edge of the seat: Reduced angular resolution of a light field cinema with fixed observer positions. In Proceedings of the 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), IEEE, Erfurt, Germany, 31 May–2 June 2017; pp. 1–6. [Google Scholar]
- Spangler, G. Psychological and physiological responses during an exam and their relation to personality characteristics. Psychoneuroendocrinology 1997, 22, 423–441. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, B.; Hetrick, W. Psychophysiology of Mental Health. In Encyclopedia of Mental Health, 2nd ed.; Friedman, H.S., Ed.; Academic Press: Oxford, UK, 2016; pp. 372–376. [Google Scholar]
- Ezhov, V.A. Toward the physical-information fundamentals of three-dimensional displays. J. Disp. Technol. 2016, 12, 1344–1351. [Google Scholar] [CrossRef]
- Choi, H.J.; Kim, N.R.; Park, H.R. Measurement and Analysis of Arousal While Experiencing Light-Field Display Device. J. Inf. Commun. Converg. Eng. 2020, 18, 188. [Google Scholar]
- Yursinboevich, K.B. Psycho-physiological bases of development of skills for independent performance of general exercises in primary class students. Best J. Innov. Sci. Res. Dev. 2023, 180–186. [Google Scholar]
- Karapetyan, V.S.; Dallakyan, A.M.; Ispiryan, M.M.; Amiraghyan, M.G.; Zheltukhina, M.R. The Prospective of the Investment of Contemporary Paradigm of Preschool Education in Future Armenia. Astra Salvensis VI 2018, 3, 381–390. [Google Scholar]
- Oh, Y.A.; Kim, S.O.; Park, S.A. Real foliage plants as visual stimuli to improve concentration and attention in elementary students. Int. J. Environ. Res. Public Health 2019, 16, 796. [Google Scholar] [CrossRef]
- Hamilton, M.; Wells, N.; Soares, A. On Requirements for Field of Light Displays to Pass the Visual Turing Test. In Proceedings of the 2022 IEEE International Symposium on Multimedia (ISM), IEEE, Italy, France, 5–7 December 2022; pp. 86–87. [Google Scholar]
- Remmele, M.; Weiers, K.; Martens, A. Stereoscopic 3D’s impact on constructing spatial hands-on representations. Comput. Educ. 2015, 85, 74–83. [Google Scholar] [CrossRef]
- Taştı, M.B.; Avcı, Ü. Examination of using monoscopic three-dimensional (M3D) and stereoscopic three-dimensional (S3D) animation on students. Educ. Inf. Technol. 2020, 25, 2765–2790. [Google Scholar] [CrossRef]
- Tzanavari, A.; Tsapatsoulis, N. Affective, Interactive and Cognitive Methods for e-Learning Design: Creating an Optimal Education Experience: Creating an Optimal Education Experience; IGI Global: Hershey, PA, USA, 2010. [Google Scholar]
- Lv, Z.; Li, X.; Li, W. Virtual reality geographical interactive scene semantics research for immersive geography learning. Neurocomputing 2017, 254, 71–78. [Google Scholar] [CrossRef]
- Chang, G.; Morreale, P.; Medicherla, P. Applications of augmented reality systems in education. In Proceedings of the Society for Information Technology & Teacher Education International Conference, Association for the Advancement of Computing in Education (AACE), San Diego, CA, USA, 29 March 2010; pp. 1380–1385. [Google Scholar]
- Kaufmann, H. Dynamic Differential Geometry in Education. J. Geom. Graph. 2009, 13, 131–144. [Google Scholar]
- Duarte, M.; Cardoso, A.; Lamounier, E., Jr. Using augmented reality for teaching physics. In Proceedings of the WRA’2005–II Workshop on Augmented Reality; 2005; pp. 1–4. Available online: https://link.springer.com/chapter/10.1007/978-3-319-13969-2_30 (accessed on 22 February 2024).
- Chae, C.; Ko, K. Introduction of physics simulation in augmented reality. In Proceedings of the 2008 International Symposium on Ubiquitous Virtual Reality, IEEE, Gwangju, Republic of Korea, 10–13 July 2008; pp. 37–40. [Google Scholar]
- Svatunek, D. “Holographic” Autostereoscopic Displays: A Perspective on Their Technology and Potential Impact in Chemistry. Chem.–A Eur. J. 2023, 29, e202301746. [Google Scholar] [CrossRef]
- Kanai, M.; Makino, M. A Study-Support System for Cutting Solids in Virtual Space on Autostereoscopic Display and Touch Panel. In Proceedings of the ITC-CSCC: International Technical Conference on Circuits Systems, Computers and Communications, Seoul, Republic of Korea, 27–30 June 2009; pp. 721–724. [Google Scholar]
- Varga Szepne, H.; Csernoch, L.; Balatoni, I. E-sports versus physical activity among adolescents. Balt. J. Health Phys. Act. 2019, 11, 6. [Google Scholar] [CrossRef]
- Rothwell, G.; Shaffer, M. eSports in K-12 and Post-Secondary schools. Educ. Sci. 2019, 9, 105. [Google Scholar] [CrossRef]
- Kara, P.A.; Tamboli, R.R.; Adhikarla, V.K.; Balogh, T.; Guindy, M.; Simon, A. Connected without disconnection: Overview of light field metaverse applications and their quality of experience. Displays 2023, 78, 102430. [Google Scholar] [CrossRef]
- Kara, P.A.; Simon, A. The Good News, the Bad News, and the Ugly Truth: A Review on the 3D Interaction of Light Field Displays. Multimodal Technol. Interact. 2023, 7, 45. [Google Scholar] [CrossRef]
- Pan, X.; Zheng, M.; Yang, J.; Campbell, A.G. An adaptive low-cost approach to display different scenes to multi-users for the light field display. In Proceedings of the 26th ACM Symposium on Virtual Reality Software and Technology, Virtual, 1–4 November 2020; pp. 1–3. [Google Scholar]
- Muliarta, I.M.; Adiputra, I.N.; Dinata, I.M.K.; Sha, L.M.I.; Tunas, I.K. Active stretching and working posture correction to improve psycho-physiological response among computer operators for high school students. J. Hum. Ergol. 2020, 49, 9–16. [Google Scholar]
- Bhuvaneswari, M.; Selvaraj, C.I.; Selvaraj, B.; Srinivasan, T. Assessment of psychological and psycho-physiological problems among visually impaired adolescents. Iran. J. Psychiatry Behav. Sci. 2016, 10, e3895. [Google Scholar] [CrossRef] [PubMed]
- Deakyne, A.J.; Valenzuela, T.; Iaizzo, P.A. Development of anaglyph 3D functionality for cost-effective virtual reality anatomical education. In Proceedings of the Intelligent Computing: Proceedings of the 2021 Computing Conference, Virtually, 15–16 July 2021; Springer: Berlin/Heidelberg, Germany, 2021; Volume 3, pp. 390–398. [Google Scholar]
- Balogh, A.; Preul, M.C.; Schornak, M.; Hickman, M.; Spetzler, R.F. Intraoperative stereoscopic quicktime virtual reality. J. Neurosurg. 2004, 100, 591–596. [Google Scholar] [CrossRef]
- Little, A.S.; Preul, M.C.; Spetzler, R.E.; Abdulrauf, S.I.; Fayad, J.N.; Brackmann, D.E.; Sekhar, L.N.; Day, J.D. Virtual Temporal Bone: An Interactive 3-Dimensional Learning Aid for Cranial Base Surgery Comments. Neurosurgery 2009, 64, 229–230. [Google Scholar]
- Sergovich, A.; Johnson, M.; Wilson, T.D. Explorable three-dimensional digital model of the female pelvis, pelvic contents, and perineum for anatomical education. Anat. Sci. Educ. 2010, 3, 127–133.132. [Google Scholar] [CrossRef]
- Nobuoka, D.; Fuji, T.; Yoshida, K.; Takagi, K.; Kuise, T.; Utsumi, M.; Yoshida, R.; Umeda, Y.; Shinoura, S.; Takeda, Y.; et al. Surgical education using a multi-viewpoint and multi-layer three-dimensional atlas of surgical anatomy (with video). J. Hepato-Biliary-Pancreat. Sci. 2014, 21, 556–561. [Google Scholar] [CrossRef]
- Lau, K.W.; Kan, C.W.; Lee, P.Y. Doing textiles experiments in game-based virtual reality: A design of the Stereoscopic Chemical Laboratory (SCL) for textiles education. Int. J. Inf. Learn. Technol. 2017, 34, 242–258. [Google Scholar] [CrossRef]
- Jeli, Z.; Popkonstantinovic, B.; Stojicevic, M.; Miladinovic, L. Anaglyph and 3D Model usage in education of Mechanical Engineers. J. Ind. Des. Eng. Graph. 2017, 12, 231–236. [Google Scholar]
- Chu, P.Y.; Chien, Y.H. The effectiveness of using stereoscopic 3D for proportion estimation in product design education. Eurasia J. Math. Sci. Technol. Educ. 2017, 13, 6635–6648. [Google Scholar] [CrossRef]
- Joseph, N. Stereoscopic Visualization as a Tool for Learning Astronomy Concepts. Ph.D. Thesis, Purdue University, West Lafayette, ID, USA, 2011. [Google Scholar]
- Turney, B.W. Anatomy in a modern medical curriculum. Ann. R. Coll. Surg. Engl. 2007, 89, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Fagan, M.; Kilmon, C.; Pandey, V. Exploring the adoption of a virtual reality simulation: The role of perceived ease of use, perceived usefulness and personal innovativeness. Campus-Wide Inf. Syst. 2012, 29, 117–127. [Google Scholar] [CrossRef]
- Abichandani, P.; Fligor, W.; Fromm, E. A cloud enabled virtual reality based pedagogical ecosystem for wind energy education. In Proceedings of the 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, Madrid, Spain, 22–25 October 2014; pp. 1–7. [Google Scholar]
- Pham, H.C.; Dao, N.; Pedro, A.; Le, Q.T.; Hussain, R.; Cho, S.; Park, C. Virtual field trip for mobile construction safety education using 360-degree panoramic virtual reality. Int. J. Eng. Educ. 2018, 34, 1174–1191. [Google Scholar]
- Liarokapis, F.; Mourkoussis, N.; White, M.; Darcy, J.; Sifniotis, M.; Petridis, P.; Basu, A.; Lister, P.F. Web3D and augmented reality to support engineering education. World Trans. Eng. Technol. Educ. 2004, 3, 11–14. [Google Scholar]
- Fjeld, M.; Voegtli, B.M. Augmented chemistry: An interactive educational workbench. In Proceedings of the Proceedings. International Symposium on Mixed and Augmented Reality, IEEE, Darmstadt, Germany, 1 October 2002; pp. 259–321. [Google Scholar]
- Thomas, R.G.; William John, N.; Delieu, J.M. Augmented reality for anatomical education. J. Vis. Commun. Med. 2010, 33, 6–15. [Google Scholar] [CrossRef]
- Chien, C.H.; Chen, C.H.; Jeng, T.S. An interactive augmented reality system for learning anatomy structure. In Proceedings of the International Multiconference of Engineers and Computer Scientists, International Association of Engineers, Hong Kong, China, 17–19 March 2010; Volume 1, pp. 17–19. [Google Scholar]
- Blum, T.; Kleeberger, V.; Bichlmeier, C.; Navab, N. mirracle: An augmented reality magic mirror system for anatomy education. In Proceedings of the 2012 IEEE Virtual Reality Workshops (VRW), IEEE, Costa Mesa, CA, USA, 4–8 March 2012; pp. 115–116. [Google Scholar]
- Zariwny, A.; Stewart, P.; Dryer, M. Visuo-haptic learning of the inner ear: Using the optical glyphs and augmented reality of the InvisibleEar©™. ACM Sigcas Comput. Soc. 2014, 44, 5–7. [Google Scholar] [CrossRef]
- Al Hamidy Hazidar, R.S. Visualization cardiac human anatomy using augmented reality mobile application. Volume 2014, 5, 2278–4209. [Google Scholar]
- Juanes, J.A.; Hernández, D.; Ruisoto, P.; García, E.; Villarrubia, G.; Prats, A. Augmented reality techniques, using mobile devices, for learning human anatomy. In Proceedings of the Second International Conference on Technological Ecosystems for Enhancing Multiculturality, Salamanca, Spain, 1–3 October 2014; pp. 7–11. [Google Scholar]
- Ma, M.; Fallavollita, P.; Seelbach, I.; Von Der Heide, A.M.; Euler, E.; Waschke, J.; Navab, N. Personalized augmented reality for anatomy education. Clin. Anat. 2016, 29, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Aebersold, M.; Voepel-Lewis, T.; Cherara, L.; Weber, M.; Khouri, C.; Levine, R.; Tait, A.R. Interactive anatomy-augmented virtual simulation training. Clin. Simul. Nurs. 2018, 15, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Bogomolova, K.; Sam, A.H.; Misky, A.T.; Gupte, C.M.; Strutton, P.H.; Hurkxkens, T.J.; Hierck, B.P. Development of a virtual three-dimensional assessment scenario for anatomical education. Anat. Sci. Educ. 2021, 14, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Cercenelli, L.; De Stefano, A.; Billi, A.M.; Ruggeri, A.; Marcelli, E.; Marchetti, C.; Manzoli, L.; Ratti, S.; Badiali, G. AEducaAR, anatomical education in augmented reality: A pilot experience of an innovative educational tool combining AR technology and 3D printing. Int. J. Environ. Res. Public Health 2022, 19, 1024. [Google Scholar] [CrossRef] [PubMed]
- Satava, R.M.; Jones, S.B. Current and future applications of virtual reality for medicine. Proc. IEEE 1998, 86, 484–489. [Google Scholar] [CrossRef]
- Gorman, P.J.; Meier, A.H.; Rawn, C.; Krummel, T.M. The future of medical education is no longer blood and guts, it is bits and bytes. Am. J. Surg. 2000, 180, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Portoni, L.; Patak, A.; Noirard, P.; Grossetie, J.C.; van Berkel, C. Real-time auto-stereoscopic visualization of 3D medical images. In Proceedings of the Medical Imaging 2000: Image Display and Visualization, SPIE, San Diego, CA, USA, 12–18 February 2000; Volume 3976, pp. 37–44. [Google Scholar]
- Ilgner, J.F.; Kawai, T.; Shibata, T.; Yamazoe, T.; Westhofen, M. Evaluation of stereoscopic medical video content on an autostereoscopic display for undergraduate medical education. In Proceedings of the Stereoscopic Displays and Virtual Reality Systems XIII. SPIE, San Jose, CA, USA, 15–19 January 2006; Volume 6055, pp. 46–56. [Google Scholar]
- Christopher, L.A.; William, A.; Cohen-Gadol, A.A. Future directions in 3-dimensional imaging and neurosurgery: Stereoscopy and autostereoscopy. Neurosurgery 2013, 72, A131–A138. [Google Scholar] [CrossRef]
- Itamiya, T.; To, M.; Oguchi, T.; Fuchida, S.; Matsuo, M.; Hasegawa, I.; Kawana, H.; Kimoto, K. A novel anatomy education method using a spatial reality display capable of stereoscopic imaging with the naked eye. Appl. Sci. 2021, 11, 7323. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, H.; Huang, T.; Zhang, X.; Liao, H. Deformable Torso Anatomy Education with Three-Dimensional Autostereoscopic Visualization and Free-Hand Interaction. In Proceedings of the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), IEEE, Christchurch, New Zealand, 12–16 March 2022; pp. 552–553. [Google Scholar]
- Looking Glass Portrait. Available online: https://lookingglassfactory.com/looking-glass-portrait (accessed on 22 January 2024).
- Otoo, E.M.A.; Leibowitz, H.; Wong, O.; Rhode, K. Using a Portable Autostereoscopic Screen to Improve Anatomy Teaching and Learning. Anatomia 2023, 2, 88–98. [Google Scholar] [CrossRef]
- Guindy, M.; Barsi, A.; Kara, P.A.; Adhikarla, V.K.; Balogh, T.; Simon, A. Camera animation for immersive light field imaging. Electronics 2022, 11, 2689. [Google Scholar] [CrossRef]
- Guindy, M.; Kara, P.A.; Balogh, T.; Simon, A. Perceptual preference for 3D interactions and realistic physical camera motions on light field displays. In Proceedings of the Virtual, Augmented, and Mixed Reality (XR) Technology for Multi-Domain Operations III, SPIE, Orlando, FL, USA, 3 April–13 June 2022; Volume 12125, pp. 156–164. [Google Scholar]
- Han, Y.; Lin, H.Y.; Chen, C.Y. Visual fatigue for laser-projection light-field 3D display in contrast with 2D display. In Proceedings of the 2017 24th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), IEEE, Kyoto, Japan, 4–7 July 2017; pp. 9–12. [Google Scholar]
- Chahar, S.; Arora, J.; Kumar, U. AI-based Model for Physio-Psycho Behavior of University Students. Int. J. Comput. Sci. Eng. 2023, 11, 23–28. [Google Scholar]
- Németh, E.; Bretz, K.; Sótonyi, P.; Bretz, K.; Horváth, T.; Tihanyi, J.; Zima, E.; Barna, T. Investigation of changes in psycho-physiological parameters evoked by short duration, intensive physical stress. Acta Physiol. Hung. 2013, 100, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Zhe, Z.; Gu, M.; Jiang, D.; Wang, J.; Lv, Y.; Zhang, Q.; Pan, H. Effects of plantscape colors on psycho-physiological responses of university students. J. Food Agric. Environ. 2012, 10, 702–708. [Google Scholar]
- Chen, Y.; Jiang, G.; Yu, M.; Jin, C.; Xu, H.; Ho, Y.S. HDR Light Field Imaging of Dynamic Scenes: A Learning-based Method and A Benchmark Dataset. Pattern Recognit. 2024, 150, 110313. [Google Scholar] [CrossRef]
- Guindy, M.; Kiran, A.V.; Kara, P.A.; Balogh, T.; Simon, A. Performance evaluation of HDR image reconstruction techniques on light field images. In Proceedings of the 2021 International Conference on 3D Immersion (IC3D), IEEE, Brussels, Belgium, 8 December 2021; pp. 1–7. [Google Scholar]
- Trelease, R.B. The virtual anatomy practical: A stereoscopic 3D interactive multimedia computer examination program. Clin. Anatomy Off. J. Am. Assoc. Clin. Anat. Br. Assoc. Clin. Anat. 1998, 11, 89–94. [Google Scholar] [CrossRef]
- Biddle, M.; Hamid, S.; Ali, N. An evaluation of stereoacuity (3D vision) in practising surgeons across a range of surgical specialities. Surgeon 2014, 12, 7–10. [Google Scholar] [CrossRef]
- Sarma, K.; Lu, K.; Larson, B.; Schmidt, J.; Cupero, F. On-demand stereoscopic 3D displays for avionic and military applications. In Proceedings of the Three-Dimensional Imaging, Visualization, and Display 2010 and Display Technologies and Applications for Defense, Security, and Avionics IV, SPIE, Orlando, FL, USA, 5–9 April 2010; Volume 7690, pp. 416–427. [Google Scholar]
- Haan, H.; Münzberg, M.; Schwarzkopf, U.; de la Barré, R.; Jurk, S.; Duckstein, B. Stereoscopic uncooled thermal imaging with autostereoscopic 3D flat-screen display in military driving enhancement systems. In Proceedings of the Infrared Technology and Applications XXXVIII, SPIE, Baltimore, Maryland, 23–27 April 2012; Volume 8353, pp. 231–238. [Google Scholar]
- Zocco, A.; Livatino, S.; De Paolis, L.T. Stereoscopic-3D vision to improve situational awareness in military operations. In Proceedings of the Augmented and Virtual Reality: First International Conference, AVR 2014, Lecce, Italy, 17–20 September 2014; Revised Selected Papers 1. Springer: Berlin/Heidelberg, Germany, 2014; pp. 351–362. [Google Scholar]
- Mihelj, M.; Novak, D.; Beguš, S. Virtual Reality Technology and Applications; Springer: Berlin, Germany, 2014. [Google Scholar]
- Sharma, S.; Otunba, S. Collaborative virtual environment to study aircraft evacuation for training and education. In Proceedings of the 2012 International Conference on Collaboration Technologies and Systems (CTS), Denver, CO, USA, 21–25 May 2012; pp. 569–574. [Google Scholar]
- Feng, Z.; González, V.A.; Amor, R.; Lovreglio, R.; Cabrera-Guerrero, G. Immersive virtual reality serious games for evacuation training and research: A systematic literature review. Comput. Educ. 2018, 127, 252–266. [Google Scholar] [CrossRef]
- McGaghie, W.C.; Issenberg, S.B.; Cohen, E.R.; Barsuk, J.H.; Wayne, D.B. Does simulation-based medical education with deliberate practice yield better results than traditional clinical education? A meta-analytic comparative review of the evidence. Acad. Med. 2011, 86, 706–711. [Google Scholar] [CrossRef]
- Beyer-Berjot, L.; Berdah, S.; Hashimoto, D.A.; Darzi, A.; Aggarwal, R. A virtual reality training curriculum for laparoscopic colorectal surgery. J. Surg. Educ. 2016, 73, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Beke Hen, L. Exploring surgeon’s acceptance of virtual reality headset for training. In Augmented Reality and Virtual Reality: The Power of AR and VR for Business; Springer: Berlin, Germany, 2019; pp. 291–304. [Google Scholar]
- Wang, P.; Wu, P.; Wang, J.; Chi, H.L.; Wang, X. A critical review of the use of virtual reality in construction engineering education and training. Int. J. Environ. Res. Public Health 2018, 15, 1204. [Google Scholar] [CrossRef]
- Kalkan, Ö.K.; Karabulut, Ş.; Höke, G. Effect of virtual reality-based training on complex industrial assembly task performance. Arab. J. Sci. Eng. 2021, 46, 12697–12708. [Google Scholar] [CrossRef]
- Hamza-Lup, F.G.; Santhanam, A.P.; Imielinska, C.; Meeks, S.L.; Rolland, J.P. Distributed augmented reality with 3-D lung dynamics—a planning tool concept. IEEE Trans. Inf. Technol. Biomed. 2007, 11, 40–46.184. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Leuze, C.; Perkins, S.; Rosenberg, J.; Daniel, B.; Martin-Gomez, A. Evaluation of different visualization techniques for perception-based alignment in medical AR. In Proceedings of the 2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), IEEE, Recife, Brazil, 9–13 November 2020; pp. 45–50. [Google Scholar]
- Sakellariou, S.; Ward, B.M.; Charissis, V.; Chanock, D.; Anderson, P. Design and implementation of augmented reality environment for complex anatomy training: Inguinal canal case study. In Proceedings of the Virtual and Mixed Reality: Third International Conference, VMR 2009, Held as Part of HCI International 2009, San Diego, CA, USA, 19–24 July 2009; Proceedings 3. Springer: Berlin/Heidelberg, Germany, 2009; pp. 605–614. [Google Scholar]
- Le Van, C.; Hoa, T.H.; Duc, N.M.; Puri, V.; Nguyen, T.S.; Le, D.N. Design and development of collaborative ar system for anatomy training. Intell. Autom. Soft Comput. 2021, 27, 853–871. [Google Scholar] [CrossRef]
- Wang, R.; Geng, Z.; Zhang, Z.; Pei, R.; Meng, X. Autostereoscopic augmented reality visualization for depth perception in endoscopic surgery. Displays 2017, 48, 50–60. [Google Scholar] [CrossRef]
- Fan, Z.; Weng, Y.; Chen, G.; Liao, H. 3D interactive surgical visualization system using mobile spatial information acquisition and autostereoscopic display. J. Biomed. Inform. 2017, 71, 154–164. [Google Scholar] [CrossRef]
- Hamilton, M.; Butyn, T.; Baker, R. Holographic Displays: Emerging Technologies and Use Cases in Defence Applications. In Proceedings of the NATO MSG-159 2018 Annual M and S Conference, Ottawa, ON, Canada, 11–12 September 2018. [Google Scholar]
- Kara, P.A.; Balogh, T.; Guindy, M.; Simon, A. 3D battlespace visualization and defense applications on commercial and use-case-dedicated light field displays. In Proceedings of the Big Data IV: Learning, Analytics, and Applications, SPIE, Orlando, FL, USA, 3 April–13 June 2022; Volume 12097, pp. 183–191. [Google Scholar]
- Kara, P.A.; Guindy, M.; Xinyu, Q.; Szakal, V.A.; Balogh, T.; Simon, A. The effect of angular resolution and 3D rendering on the perceived quality of the industrial use cases of light field visualization. In Proceedings of the 2022 16th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), IEEE, Dijon, France, 19–21 October 2022; pp. 600–607. [Google Scholar]
- Kara, P.A.; Wippelhauser, A.; Balogh, T.; Bokor, L. How I met your V2X sensor data: Analysis of projection-based light field visualization for vehicle-to-everything communication protocols and use cases. Sensors 2023, 23, 1284. [Google Scholar] [CrossRef]
- Holographics for Battlespace Visualization. Available online: https://www.avalonholographics.com/use-cases/holographics-for-enhanced-battlespace-visualization (accessed on 22 January 2024).
- Ahar, A.; Chlipala, M.; Birnbaum, T.; Zaperty, W.; Symeonidou, A.; Kozacki, T.; Kujawinska, M.; Schelkens, P. Suitability analysis of holographic vs light field and 2D displays for subjective quality assessment of Fourier holograms. Opt. Express 2020, 28, 37069–37091. [Google Scholar] [CrossRef] [PubMed]
- Viola, I.; Řeřábek, M.; Ebrahimi, T. Comparison and evaluation of light field image coding approaches. IEEE J. Sel. Top. Signal Process. 2017, 11, 1092–1106. [Google Scholar] [CrossRef]
- Lanman, D.; Luebke, D. Near-eye light field displays. ACM Trans. Graph. (TOG) 2013, 32, 1–10. [Google Scholar] [CrossRef]
- Jang, C.; Bang, K.; Moon, S.; Kim, J.; Lee, S.; Lee, B. Retinal 3D: Augmented reality near-eye display via pupil-tracked light field projection on retina. ACM Trans. Graph. (TOG) 2017, 36, 1–13. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, Q.; Xia, J.; Wu, J.; Du, B.; Zhang, H. Hybrid computational near-eye light field display. IEEE Photonics J. 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Liu, M.; Lu, C.; Li, H.; Liu, X. Near eye light field display based on human visual features. Opt. Express 2017, 25, 9886–9900. [Google Scholar] [CrossRef]
- Kara, P.A.; Tamboli, R.R.; Shafiee, E.; Martini, M.G.; Simon, A.; Guindy, M. Beyond perceptual thresholds and personal preference: Towards novel research questions and methodologies of quality of experience studies on light field visualization. Electronics 2022, 11, 953. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guindy, M.; Kara, P.A. Light Field Visualization for Training and Education: A Review. Electronics 2024, 13, 876. https://doi.org/10.3390/electronics13050876
Guindy M, Kara PA. Light Field Visualization for Training and Education: A Review. Electronics. 2024; 13(5):876. https://doi.org/10.3390/electronics13050876
Chicago/Turabian StyleGuindy, Mary, and Peter A. Kara. 2024. "Light Field Visualization for Training and Education: A Review" Electronics 13, no. 5: 876. https://doi.org/10.3390/electronics13050876
APA StyleGuindy, M., & Kara, P. A. (2024). Light Field Visualization for Training and Education: A Review. Electronics, 13(5), 876. https://doi.org/10.3390/electronics13050876