Image Processing in L1-Norm-Based Discrete Cartesian and Polar Coordinates
Abstract
:1. Introduction
2. L1- and L2-Norm-Based Discrete Image Domains
3. L1-Norm-Based Discrete Coordinates
4. Radial Image Processing in Discrete Polar Coordinate
Algorithm 1: Implementation of the proposed coordinate conversion method. |
- : Pyramid radius enclosing the image. - : Pixel value at in the Cartesian coordinate system. - : Pixel value at in the discrete polar coordinate system. - : Legitimate angle of the lattice on the pyramid of radius . /*Transform Cartesian coordinate to discrete polar coordinate. */ For to /* Determine legitimate angles. */ and then For to /* Convert the coordinates lying at . */ |n| = ∂() and /* Converting pixel values */ End /* of r */ End /* of i */ /*Transform polar coordinate to Cartesian coordinate. */ For to For to /* Convert the coordinates lying at */ . /* Converting pixel values */ End /* of r */ End /* of i */ |
5. Applications of Radial Image Processing
5.1. Smoothing Radially Oriented Images
5.2. Biomedical Object Segmentation with Learning Network
6. Conclusions and Further Study
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Costa, S.F.; Cear, R.M. Shape Analysis and Classification; CRC: Boca Raton, FL, USA, 2001. [Google Scholar]
- Ranggyyan, R.M.; Mudigonda, N.R.; Desautels, J.E. Boundary modeling and shape analysis methods for classification of mammographic masses. Med. Biol. Eng. Comput. 2000, 38, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Ittannavar, S.S.; Havaldar, R.H. Segmentation of Breast Masses in Mammogram Image Using Multilevel Multiobjective Electromagnetism-Like Optimization Algorithm. BioMed Res. Int. 2022, 2022, 8576768. [Google Scholar] [CrossRef] [PubMed]
- Kuehlkamp, A.; Boyd, A.; Czajka, A.; Flynn, P.; Chute, D.; Benjamin, E. Interpretable Deep Learning-Based Forensic Iris Segmentation and Recognition. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) Workshops, Waikoloa, HI, USA, 4–8 January 2022; pp. 359–368. [Google Scholar]
- Lim, K.B.; Yu, W.M. Compact discrete polar coordinate transform for the restoration of rotational blurred image. In Proceedings of the 12th International Conference on Multi-Media Modelling Conference Proceedings, Beijing, China, 4–6 January 2006; pp. 352–355. [Google Scholar]
- Spaan, F.H.P.; Lagendijk, L.; Biermond, J. Shape coding using polar coordinates and the discrete cosine transform. In Proceedings of the International Conference on Image Processing, Santa Barbara, CA, USA, 26–29 October 1997; pp. 516–518. [Google Scholar]
- Gibson, J.; Syood, K. Lattice quantization. Adv. Electron. Phys. 1988, 72, 259–330. [Google Scholar]
- Kim, W.; Kim, H.; Kim, S. Radial Image Processing in the Discrete Polar Coordinate. In Advanced Nondestructive Evaluation II; World Scientific Publishing: Singapore, 2008; pp. 572–577. [Google Scholar]
- Cao, X.; Pan, J.S.; Wang, Z.; Sun, Z.; ul Haq, A.; Deng, W.; Yang, S. Application of generated mask method based on Mask R-CNN in classification and detection of melanoma. Comput. Methods Programs Biomed. 2021, 207, 106174. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, X. LVQAC: Lattice Vector Quantization Coupled with Spatially Adaptive Companding for Efficient Learned Image Compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 10239–10248. [Google Scholar]
- Bardaud, M.; Sole, P.; Antonini, M.; Mathieu, P. Pyramidal lattice vector quantization for multiscale image coding. IEEE Trans. Circ. Syst. Video Tech. 1994, 3, 367–380. [Google Scholar]
- Stewart, J. Calculus, 8th ed.; CENGAGE Learning: Singapore, 2016. [Google Scholar]
- Diniz, P.S.R. The Least-Mean-Square (LMS) Algorithm. In Adaptive Filtering: Algorithms and Practical Implementation; Springer: Berlin/Heidelberg, Germany, 1997; pp. 71–131. [Google Scholar]
- Wang, M.; Zheng, S.; Li, X.; Qin, X. A new image denoising method based on Gaussian filter. In Proceedings of the International Conference on Information Science, Electronics and Electrical Engineering, Sapporo, Japan, 26–28 April 2014; pp. 163–167. [Google Scholar]
- Michael, E.; Ma, H.; Li, H.; Kulwa, F.; Li, J. Breast Cancer Segmentation Methods: Current Status and Future Potentials. BioMed Res. Int. 2021, 2021, 9962109. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mak R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Anantharaman, R.; Velazquez, M.; Lee, Y. Utilizing Mask R-CNN for Detection and Segmentation of Oral Diseases. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 2197–2204. [Google Scholar]
- Everingham, M.; Eslami, S.M.A.; Van, G.L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes Challenge: A Retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [Google Scholar] [CrossRef]
- PASCAL VOC Dataset. Available online: http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html (accessed on 10 March 2023).
- Goutte, C.; Gaussier, E. A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation. In Advances in Information Retrieval; Losada, D.E., Fernandez-Luna, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 345–359. [Google Scholar]
- Kumar, S.; Gupta, P. Comparative Analysis of Intersection Algorithms on Queries using Precision, Recall and F-Score. Int. J. Comput. Appl. 2015, 130, 28–36. [Google Scholar] [CrossRef]
Recall | Precision | Fscore | ||||
---|---|---|---|---|---|---|
Catersian | Polar | Cartesian | Polar | Cartesian | Polar | |
Benign tumor | 0.87 | 0.96 | 0.86 | 0.97 | 0.81 | 0.97 |
Hippocampus | 0.70 | 0.85 | 0.84 | 0.97 | 0.74 | 0.90 |
Spiculate cancer | 0.50 | 0.72 | 0.20 | 0.81 | 0.47 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.; Kim, W. Image Processing in L1-Norm-Based Discrete Cartesian and Polar Coordinates. Electronics 2024, 13, 1088. https://doi.org/10.3390/electronics13061088
Lee G, Kim W. Image Processing in L1-Norm-Based Discrete Cartesian and Polar Coordinates. Electronics. 2024; 13(6):1088. https://doi.org/10.3390/electronics13061088
Chicago/Turabian StyleLee, Geunmin, and Wonha Kim. 2024. "Image Processing in L1-Norm-Based Discrete Cartesian and Polar Coordinates" Electronics 13, no. 6: 1088. https://doi.org/10.3390/electronics13061088
APA StyleLee, G., & Kim, W. (2024). Image Processing in L1-Norm-Based Discrete Cartesian and Polar Coordinates. Electronics, 13(6), 1088. https://doi.org/10.3390/electronics13061088