An Open-Source Face-Aware Capture System
Abstract
:1. Introduction
- (1)
- A novel open-source hardware solution,
- (2)
- A software application designed for embedded processors that evaluates face quality in real-time based on ISO standards and provides a user interface for interaction,
- (3)
- A system validation study involving live participants, with a U.S. government-certified website for passport image quality serving as the benchmark [32].
2. System Overview
3. Methodology
3.1. Geometric Test
3.2. Photographic and Pose-Specific Tests
3.3. Encryption
4. Hardware Design
4.1. NVIDIA Jetson Nano
4.2. Camera
4.3. Display
4.4. Enclosure
5. Software Installation and Implementation
6. Validation Study and Performance Analysis
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sanchez del Rio, J.; Moctezuma, D.; Conde, C.; Martin de Diego, I.; Cabello, E. Automated Border Control E-Gates and Facial Recognition Systems. Comput. Secur. 2016, 62, 49–72. [Google Scholar] [CrossRef]
- Biometrics|U.S. Customs and Border Protection. Available online: https://www.cbp.gov/travel/biometrics (accessed on 28 August 2023).
- Grother, P.; Tabassi, E. Performance of Biometric Quality Measures. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, Z.; Ali, T.; Khan, S.U. Effects of Pose and Image Resolution on Automatic Face Recognition. IET Biom. 2016, 5, 111–119. [Google Scholar] [CrossRef]
- Aldrian, O.; Smith, W.A.P. Inverse Rendering of Faces with a 3D Morphable Model. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1080–1093. [Google Scholar] [CrossRef] [PubMed]
- Wiskott, L.; Fellous, J.-M.; Kruger, N. Face Recognition by Elastic Bunch Graph Matching. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 7. [Google Scholar] [CrossRef]
- Blanz, V.; Vetter, T. Face Recognition Based on Fitting a 3D Morphable Model. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 1063–1074. [Google Scholar] [CrossRef]
- Chen, J.; Deng, Y.; Bai, G.; Su, G. Face Image Quality Assessment Based on Learning to Rank. IEEE Signal Process. Lett. 2015, 22, 90–94. [Google Scholar] [CrossRef]
- Home. Available online: https://www.icao.int/Pages/default.aspx (accessed on 7 March 2024).
- U.S. Passports. Available online: https://travel.state.gov/content/travel/en/passports.html (accessed on 23 February 2024).
- U.S. Passport Photos. Available online: https://travel.state.gov/content/travel/en/passports/how-apply/photos.html (accessed on 25 June 2022).
- Labati, R.D.; Genovese, A.; Muñoz, E.; Piuri, V.; Scotti, F.; Sforza, G. Advanced Design of Automated Border Control Gates: Biometric System Techniques and Research Trends. In Proceedings of the 2015 IEEE International Symposium on Systems Engineering (ISSE), Rome, Italy, 28–30 September 2015; pp. 412–419. [Google Scholar]
- Noori, S. Suspicious Infrastructures: Automating Border Control and the Multiplication of Mistrust through Biometric E-Gates. Geopolitics 2022, 27, 1117–1139. [Google Scholar] [CrossRef]
- Oostveen, A.-M.; Kaufmann, M.; Krempel, E.; Grasemann, G. Automated Border Control: A Comparative Usability Study at Two European Airports 2014. In Proceedings of the 8th International Conference on Interfaces and Human Computer Interaction (IHCI 2014), Lisbon, Portugal, 14–17 July 2014. [Google Scholar]
- Bingöl, Ö.; Ekinci, M. Stereo-Based Palmprint Recognition in Various 3D Postures. Expert Syst. Appl. 2017, 78, 74–88. [Google Scholar] [CrossRef]
- Biometrics, A. Biometrics Simplified. Available online: https://www.aware.com/ (accessed on 21 August 2023).
- Hernandez-Ortega, J.; Galbally, J.; Fierrez, J.; Haraksim, R.; Beslay, L. FaceQnet: Quality Assessment for Face Recognition Based on Deep Learning. In Proceedings of the 2019 International Conference on Biometrics (ICB), Crete, Greece, 4–7 June 2019; pp. 1–8. [Google Scholar]
- Lijun, Z.; Xiaohu, S.; Fei, Y.; Pingling, D.; Xiangdong, Z.; Yu, S. Multi-Branch Face Quality Assessment for Face Recognition. In Proceedings of the 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi’an, China, 16–19 October 2019; pp. 1659–1664. [Google Scholar]
- Kumar, V.D.A.; Kumar, V.D.A.; Malathi, S.; Vengatesan, K.; Ramakrishnan, M. Facial Recognition System for Suspect Identification Using a Surveillance Camera. Pattern Recognit. Image Anal. 2018, 28, 410–420. [Google Scholar] [CrossRef]
- Kleihorst, R.; Reuvers, M.; Krose, B.; Broers, H. A Smart Camera for Face Recognition. In Proceedings of the 2004 International Conference on Image Processing, 2004. ICIP ’04, Singapore, 24–27 October 2004; Volume 5, pp. 2849–2852. [Google Scholar]
- Al-Faris, M.; Chiverton, J.; Ndzi, D.; Ahmed, A.I. A Review on Computer Vision-Based Methods for Human Action Recognition. J. Imaging 2020, 6, 46. [Google Scholar] [CrossRef]
- Iancu, C.; Corcoran, P.; Costache, G. A Review of Face Recognition Techniques for In-Camera Applications. In Proceedings of the 2007 International Symposium on Signals, Circuits and Systems, Iasi, Romania, 13–14 July 2007; Volume 1, pp. 1–4. [Google Scholar]
- Suryowinoto, A.; Herlambang, T.; Tsusanto, R.; Susanto, F.A. Prototype of an Automatic Entrance Gate Security System Using a Facial Recognition Camera Based on The Haarcascade Method. J. Phys. Conf. Ser. 2021, 2117, 012015. [Google Scholar] [CrossRef]
- Innovative Contactless Palmprint Recognition System Based on Dual-Camera Alignment|IEEE Journals & Magazine|IEEE Xplore. Available online: https://ieeexplore.ieee.org/abstract/document/9707646 (accessed on 17 January 2024).
- Chowdhury, A.M.M.; Hossain, S.M.S.; Sarker, M.A.B.; Imtiaz, M.H. Automatic Generation of Synthetic Palm Images. In Proceedings of the Interdisciplinary Conference on Mechanics, Computers and Electrics, Barcelona, Spain, 6–7 October 2022. [Google Scholar]
- Sarker, M.A.B.; Sola-Thomas, E.; Jamieson, C.; Imtiaz, M.H. Autonomous Movement of Wheelchair by Cameras and YOLOv7. Eng. Proc. 2023, 31, 60. [Google Scholar] [CrossRef]
- Lindner, T.; Wyrwał, D.; Białek, M.; Nowak, P. Face Recognition System Based on a Single-Board Computer. In Proceedings of the 2020 International Conference Mechatronic Systems and Materials (MSM), Bialystok, Poland, 1–3 July 2020; pp. 1–6. [Google Scholar]
- Caracciolo, M.V.; Casciotti, O.; Lloyd, C.D.; Sola-Thomas, E.; Weaver, M.; Bielby, K.; Sarker, M.A.B.; Imtiaz, M.H. Autonomous Navigation System from Simultaneous Localization and Mapping. In Proceedings of the 2022 IEEE Microelectronics Design Test Symposium (MDTS), Albany, NY, USA, 23–26 May 2022. [Google Scholar]
- Sola-Thomas, E.; Sarker, M.A.B.; Caracciolo, M.V.; Casciotti, O.; Lloyd, C.D.; Imtiaz, M.H. Design of a Low-Cost, Lightweight Smart Wheelchair. In Proceedings of the 2021 IEEE Microelectronics Design & Test Symposium (MDTS), Albany, NY, USA; 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Sarker, M.A.B.; Sola, P.S.T.; Jones, A.; Laing, E.; Sola-Thomas, E.; Imtiaz, M. Vision Controlled Sensorized Prosthetic Hand. In Proceedings of the Interdisciplinary Conference on Mechanics, Computers and Electrics (ICMECE 2022), Barcelona, Spain, 6–7 October 2022. [Google Scholar]
- Dworkin, M.J. Advanced Encryption Standard (AES); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2023; p. NIST FIPS 197-upd1. [Google Scholar]
- Photo-Tool. Available online: https://tsg.phototool.state.gov/photo (accessed on 18 August 2023).
- Davisking/Dlib: A Toolkit for Making Real World Machine Learning and Data Analysis Applications in C++. Available online: https://github.com/davisking/dlib/tree/master (accessed on 18 August 2023).
- Ferrara, M.; Franco, A.; Maio, D.; Maltoni, D. Face Image Conformance to ISO/ICAO Standards in Machine Readable Travel Documents. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1204–1213. [Google Scholar] [CrossRef]
- Pagaduan, R.A.; Aragon, R.; Medina, R.P. iBlurDetect: Image Blur Detection Techniques Assessment and Evaluation Study. In Proceedings of the International Conference on Culture Heritage, Education, Sustainable Tourism, and Innovation Technologies, Virtual, 17–18 September 2020; SCITEPRESS—Science and Technology Publications: Medan, Indonesia, 2020; pp. 286–291. [Google Scholar]
- Aravinth, S.S.; Gopi, A.; Chowdary, G.L.; Bhagavath, K.; Srinivas, D.R. Implementation of Blur Image to Sharp Image Conversion Using Laplacian Approach. In Proceedings of the 2022 3rd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 20–22 October 2022; pp. 339–345. [Google Scholar]
- Bianchi, D.; Buccini, A.; Donatelli, M.; Randazzo, E. Graph Laplacian for Image Deblurring 2021. arXiv 2021, arXiv:2102.10327. [Google Scholar]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 4th ed.; Pearson: New York, NY, USA, 2018; ISBN 978-0-13-335672-4. [Google Scholar]
- Eijs, H. Pycryptodome: Cryptographic Library for Python. Available online: https://www.pycryptodome.org (accessed on 5 March 2024).
- Raspberry Pi 4 Model B. Available online: https://www.raspberrypi.com/products/raspberry-pi-4-model-b/ (accessed on 29 August 2023).
- BeagleBone® Black. BeagleBoard. Available online: https://www.beagleboard.org/boards/beaglebone-black (accessed on 19 August 2023).
- Crazy Engineer. Nvidia Jetson Nano vs Raspberry Pi 4 Benchmark. Arnab Kumar Das 2021. Available online: https://www.arnabkumardas.com/topics/benchmark/nvidia-jetson-nano-vs-raspberry-pi-4-benchmark/ (accessed on 29 August 2023).
- See3CAM_160—16MP (4K) Autofocus USB 3.1 Gen 1 Camera Board (Color). Available online: https://www.e-consystems.com/usb-cameras/16mp-sony-imx298-autofocus-usb-camera.asp (accessed on 16 August 2023).
- Sarker, M.A.B. Baset-Sarker/Face-Aware-Capture 2024. Available online: https://github.com/baset-sarker/face-aware-capture (accessed on 1 March 2024).
- balenaEtcher—Flash OS Images to SD Cards & USB Drives. Available online: https://etcher.balena.io/ (accessed on 27 February 2024).
- Get Started with Jetson Nano Developer Kit. Available online: https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit (accessed on 27 February 2024).
Test | Parameters |
---|---|
Geometric tests | Eye distance (min 90 pixels) Vertical position (0.3 B < M < 0.5 B′) Horizontal position (0.45 A < M < 0.55 A) Head image width ratio (0.5 A < CC < 0.75 A) Head image height ratio (0.6 B < DD < 0.9 B′) |
Photographic and pose-specific tests | Blurred Looking Away Unnatural Skin Tone Too Dark/Light Washed Out Pixelation Red Eyes Eyes Closed Mouth Open Varied Background Roll/Pitch Greater than 8° |
Demographic Details | Type | Count |
---|---|---|
Ethnicity | Caucasian | 24 |
Asian | 11 | |
Hispanic | 4 | |
Age range | 6 to 17 years | 2 |
18 to 25 years | 24 | |
26 to 40 years | 11 | |
Above 40 years | 1 |
Ethnicity | No. of Subject | No. of Test Image | Accepted | Rejected | Accuracy |
---|---|---|---|---|---|
Caucasian | 24 | 72 | 72 | 0 | 100% |
Asian | 11 | 33 | 32 | 1 | 96.96% |
Hispanic | 4 | 12 | 12 | 0 | 100% |
Average | 98.98% |
Operation | Time (s) |
---|---|
Brightness check | 0.004549 |
Background color check | 0.001094 |
Blur photo check | 0.001533 |
Image washed-out check | 0.000539 |
Pixelation check | 0.003152 |
Landmark point detection | 0.032035 |
Jaw angle time | 0.000037 |
Eye distance | 0.000312 |
Red-eye detector | 0.000306 |
Mouth distance | 0.000139 |
Total time per frame | 0.075623 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarker, M.A.B.; Hossain, S.M.S.; Venkataswamy, N.G.; Schuckers, S.; Imtiaz, M.H. An Open-Source Face-Aware Capture System. Electronics 2024, 13, 1178. https://doi.org/10.3390/electronics13071178
Sarker MAB, Hossain SMS, Venkataswamy NG, Schuckers S, Imtiaz MH. An Open-Source Face-Aware Capture System. Electronics. 2024; 13(7):1178. https://doi.org/10.3390/electronics13071178
Chicago/Turabian StyleSarker, Md Abdul Baset, S. M. Safayet Hossain, Naveenkumar G. Venkataswamy, Stephanie Schuckers, and Masudul H. Imtiaz. 2024. "An Open-Source Face-Aware Capture System" Electronics 13, no. 7: 1178. https://doi.org/10.3390/electronics13071178
APA StyleSarker, M. A. B., Hossain, S. M. S., Venkataswamy, N. G., Schuckers, S., & Imtiaz, M. H. (2024). An Open-Source Face-Aware Capture System. Electronics, 13(7), 1178. https://doi.org/10.3390/electronics13071178