Heat Consumer Model for Robust and Fast Simulations of District Heating Networks Using Modelica
Abstract
:1. Introduction
1.1. Simulation of District Heating Networks: Tools and Applications
1.2. Fast Simulation of District Heating Networks
1.3. Heat Consumer Models
1.4. Contribution of This Article
- Known HC models are either too detailed (long simulation times, high effort for proper parameterization) or too simple (do not plausibly reflect the relevant effects).
- To the best of our knowledge, the importance and influence of HC model design on simulation time has never been evaluated in detail.
- How should a HC be modeled to yield plausible results at various operating conditions and enable robust and fast simulations of large DHNs?
- How and to what extent does the HC model design affect the overall simulation time?
2. Simulation of DHN Using Modelica
2.1. Models for DHN and HC
2.1.1. AixLib
2.1.2. DisHeatLib
2.1.3. DHNSim
2.2. Strategies for Fast Simulations of DHN
2.2.1. Simplified Modeling Approach of HCs
2.2.2. Avoiding Events
2.2.3. Limiting Dynamics of the Models
3. Description of the Proposed Heat Consumer Model
3.1. Heat Consumer Model Design
3.2. Determining Load Mass Flow
3.3. Determining Bypass Mass Flow
4. Evaluation of the Heat Consumer Model
4.1. Demonstration Network
4.2. Evaluation of Simulation Results and Performance
4.2.1. Comparison of General Simulation Results
4.2.2. Effect of Mass Flow Time Constant and Load Correction
4.2.3. Bypass Behavior
4.2.4. Load Hysteresis
4.2.5. Undersupply
4.2.6. Comparison with Measurement Data from an Existing DHN
4.2.7. Simulation Performance
4.3. Limitations of the Proposed HC Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DHN | District heating network | |
HC | Heat consumers | |
Symbols | ||
The following symbols are used in this manuscript: | ||
Symbol | Explanation | Unit |
heat capacity of water at constant pressure | J/(kg K) | |
differential pressure | bar | |
f | dimensionless factor | - |
mass flow rate | kg/s | |
heat flow rate | W | |
T | temperature | °C |
Subscripts | ||
The following subscripts are used in this manuscript: | ||
Subscript | Explanation | |
bypass | in the bypass part of the model | |
load | in the heat load part of the model | |
max | maximum allowed value | |
min | minimum required value | |
nom | nominal value | |
RL | in the return line | |
set | set point of the variable | |
SL | in the supply line |
References
- Mathiesen, B.V.; Bertelsen, N.; Schneider, N.C.A.; García, L.S.; Paardekooper, S.; Thellufsen, J.Z.; Djørup, S.R. Towards a Decarbonised Heating and Cooling Sector in Europe: Unlocking the Potential of Energy Efficiency and District Energy; Aalborg Universitet: Aalborg East, Denmark, 2019. [Google Scholar]
- Lund, H.; Werner, S.; Wiltshire, R.; Svendsen, S.; Thorsen, J.E.; Hvelplund, F.; Mathiesen, B.V. 4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems. Energy 2014, 68, 1–11. [Google Scholar] [CrossRef]
- O’Donovan, K.; Falay, B.; Leusbrock, I. Renewables, storage, intelligent control: How to address complexity and dynamics in smart district heating systems? Energy Procedia 2018, 149, 529–538. [Google Scholar] [CrossRef]
- Lund, H.; Østergaard, P.A.; Chang, M.; Werner, S.; Svendsen, S.; Sorknæs, P.; Thorsen, J.E.; Hvelplund, F.; Mortensen, B.O.G.; Mathiesen, B.V.; et al. The status of 4th generation district heating: Research and results. Energy 2018, 164, 147–159. [Google Scholar] [CrossRef]
- Schweiger, G.; Heimrath, R.; Falay, B.; O’Donovan, K.; Nageler, P.; Pertschy, R.; Engel, G.; Streicher, W.; Leusbrock, I. District energy systems: Modelling paradigms and general-purpose tools. Energy 2018, 164, 1326–1340. [Google Scholar] [CrossRef]
- Allegrini, J.; Orehounig, K.; Mavromatidis, G.; Ruesch, F.; Dorer, V.; Evins, R. A review of modelling approaches and tools for the simulation of district-scale energy systems. Renew. Sustain. Energy Rev. 2015, 52, 1391–1404. [Google Scholar] [CrossRef]
- Brown, A.; Foley, A.; Laverty, D.; McLoone, S.; Keatley, P. Heating and cooling networks: A comprehensive review of modelling approaches to map future directions. Energy 2022, 261, 125060. [Google Scholar] [CrossRef]
- Soons, F.F.M.; Torrens, J.I.; Hensen, J.L.M.; De Schrevel, R.A.M. A Modelica based computational model for evaluating a renewable district heating system. In Linköping Electronic Conference Proceedings, Proceedings of the 10th International Modelica Conference, Lund, Sweden, 10–12 March 2014; Tummescheit, H., Årzén, K.E., Eds.; Modelica Assoc: Linköping, Sweden, 2014. [Google Scholar]
- Giraud, L.; Paulus, C.; Baviere, R. Modeling of Solar District Heating: A Comparison Between TRNSYS and MODELICA. In Conference Proceedings, Proceedings of the EuroSun 2014, International Conference on Solar Energy and Buildings, Aix-les-Bains, France, 16–19 September 2015; Frank, E., Papillion, P., Eds.; International Solar Energy Society: Freiburg im Breisgau, Germany, 2015; pp. 1–11. [Google Scholar]
- Zajacs, A.; Bogdanovičs, R.; Zeiza-Seleznova, A.; Valančius, R.; Zemītis, J. Integration of decentralized solar collectors into a district heating system. Sustain. Cities Soc. 2022, 83, 103920. [Google Scholar] [CrossRef]
- Kelch, J.; Kusyy, O.; Zipplies, J.; Orozaliev, J.; Vajen, K. Solar district heating versus renovation of buildings as measures for decarbonization of heat supply in rural areas. In Proceedings of the ISES and IEA SHC International Conference on Solar Energy for Buildings and Industry, EuroSun, Kassel, Germany, 25–29 September 2022; Vajen, K., Ed.; International Solar Energy Society: Freiburg im Breisgau, Germany, 2022. [Google Scholar]
- Lu, M.; Zhang, C.; Zhang, D.; Wang, R.; Zhou, Z.; Zhan, C.; Zai, X.; Jing, Q. Operational optimization of district heating system based on an integrated model in TRNSYS. Energy Build. 2021, 230, 110538. [Google Scholar] [CrossRef]
- Fritzson, P. Principles of Object Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach; IEEE Press: Piscataway, NJ, USA, 2015. [Google Scholar]
- Kauko, H.; Kvalsvik, K.H.; Rohde, D.; Nord, N.; Utne, Å. Dynamic modeling of local district heating grids with prosumers: A case study for Norway. Energy 2018, 151, 261–271. [Google Scholar] [CrossRef]
- Kauko, H.; Rohde, D.; Hafner, A. Local Heating Networks with Waste Heat Utilization: Low or Medium Temperature Supply? Energies 2020, 13, 954. [Google Scholar] [CrossRef]
- Stock, J.; Arjuna, F.; Xhonneux, A.; Müller, D. Modelling of waste heat integration into an existing district heating network operating at different supply temperatures. Smart Energy 2023, 10, 100104. [Google Scholar] [CrossRef]
- Neirotti, F.; Noussan, M.; Riverso, S.; Manganini, G. Analysis of Different Strategies for Lowering the Operation Temperature in Existing District Heating Networks. Energies 2019, 12, 321. [Google Scholar] [CrossRef]
- Schweiger, G.; Larsson, P.O.; Magnusson, F.; Lauenburg, P.; Velut, S. District heating and cooling systems – Framework for Modelica-based simulation and dynamic optimization. Energy 2017, 137, 566–578. [Google Scholar] [CrossRef]
- del Hoyo Arce, I.; Herrero López, S.; López Perez, S.; Rämä, M.; Klobut, K.; Febres, J.A. Models for fast modelling of district heating and cooling networks. Renew. Sustain. Energy Rev. 2018, 82, 1863–1873. [Google Scholar] [CrossRef]
- Jorissen, F.; Wetter, M.; Helsen, L. Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation. In Linköping Electronic Conference Proceedings, Proceedings of the 11th International Modelica Conference, Versailles, France, 21–23 September 2015; Linköping University Electronic Press: Linköping, Sweden, 2015; pp. 59–69. [Google Scholar]
- Loewen, A. Entwicklung eines Verfahrens zur Aggregation Komplexer Fernwärmenetze. Ph.D. Thesis, Universität Dortmund, Dortmund, Germany, 2001. [Google Scholar]
- Larsen, H.V.; Pálsson, H.; Bøhm, B.; Ravn, H.F. Aggregated dynamic simulation model of district heating networks. Energy Convers. Manag. 2002, 43, 995–1019. [Google Scholar] [CrossRef]
- Larsen, H.V.; Bøhm, B.; Wigbels, M. A comparison of aggregated models for simulation and operational optimisation of district heating networks. Energy Convers. Manag. 2004, 45, 1119–1139. [Google Scholar] [CrossRef]
- Falay, B.; Schweiger, G.; O’Donovan, K.; Leusbrock, I. Enabling large-scale dynamic simulations and reducing model complexity of district heating and cooling systems by aggregation. Energy 2020, 209, 118410. [Google Scholar] [CrossRef]
- Boussaid, T.; Rousset, F.; Scuturici, V.M.; Clausse, M. Evaluation of Graph Neural Networks as Surrogate Model for District Heating Networks Simulation. In Proceedings of the 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2023), Las Palmas de Gran Canaria, Spain, 25–30 June 2023; Smith, J.R., Ed.; Curran Associates Inc.: Red Hook, NY, USA, 2023; pp. 3182–3193. [Google Scholar]
- Giraud, L.; Bavière, R.; Vallée, M.; Paulus, C. Presentation, Validation and Application of the DistrictHeating Modelica Library. In Linköping Electronic Conference Proceedings, Proceedings of the 11th International Modelica Conference, Versailles, France, 21–23 September 2015; Modelica Association, Linköping University Electronic Press, Eds.; Linköping University Electronic Press: Linköping, Sweden, 2015; pp. 79–88. [Google Scholar]
- Leitner, B.; Widl, E.; Gawlik, W.; Hofmann, R. A method for technical assessment of power-to-heat use cases to couple local district heating and electrical distribution grids. Energy 2019, 182, 729–738. [Google Scholar] [CrossRef]
- Modelica Association. Modelica Standard Library, Version 3.2.3. Available online: https://github.com/modelica/ModelicaStandardLibrary/ (accessed on 11 January 2024).
- van der Heijde, B.; Fuchs, M.; Ribas Tugores, C.; Schweiger, G.; Sartor, K.; Basciotti, D.; Müller, D.; Nytsch-Geusen, C.; Wetter, M.; Helsen, L. Dynamic equation-based thermo-hydraulic pipe model for district heating and cooling systems. Energy Convers. Manag. 2017, 151, 158–169. [Google Scholar] [CrossRef]
- International Building Performance Simulation Association. Modelica IBPSA Library, Version 3.0.0. Available online: https://github.com/ibpsa/modelica-ibpsa (accessed on 11 January 2024).
- Müller, D.; Lauster, M.; Constantin, A.; Fuchs, M.; Remmen, P. AixLib-an Open-Source Modelica Library within the IEA-EBC Annex 60 Framework. In Proceedings of the Central European Symposium on Building Physics CESBP, Dresden, Germany, 14–16 September 2016. [Google Scholar]
- Maier, L.; Jansen, D.; Wüllhorst, F.; Kremer, M.; Kümpel, A.; Blacha, T.; Müller, D. AixLib: An open-source Modelica library for compound building energy systems from component to district level with automated quality management. J. Build. Perform. Simul. 2023, 17, 196–219. [Google Scholar] [CrossRef]
- RWTH-EBC. AixLib, Version 1.0.0. Available online: https://github.com/RWTH-EBC/AixLib (accessed on 5 June 2023).
- AIT-IES. DisHeatLib, Version 1.0.0. Available online: https://github.com/AIT-IES/DisHeatLib (accessed on 5 June 2023).
- Zipplies, J.; Orozaliev, J.; Vajen, K. Development of Models for Long-Term Simulations of District Heating Networks at High Temporal and Spatial Resolutions. In Proceedings of the EuroSun 2022, Kassel, Germany, 25–29 September 2022; Vajen, K., Ed.; International Solar Energy Society: Freiburg im Breisgau, Germany, 2023. Available online: http://proceedings.ises.org/paper/eurosun2022/eurosun2022-0181-Zipplies.pdf (accessed on 12 January 2024).
- Lawrence Berkeley National Laboratory. User Guide of the Modelica Buildings Library. Available online: https://simulationresearch.lbl.gov/modelica/userGuide/ (accessed on 7 June 2023).
Name | Specifications (HC Model and Other) |
---|---|
main | DHNSim, constant return temp., no load correction, tau_m_flow = 180 s, with bypass, no hysteresis |
corrLoad | alike main, but with correction of deviations between prescribed and actual load value |
fastDynamics | alike main, but tau_m_flow = 30 s |
noBypass | alike main, but no bypasses |
hysteresis | alike main, but with hysteresis to swith load mass flow off |
onePipe | alike main, but pipe network contains only one pipe |
AixLib | AixLib open-loop demand model, constant return temperature |
AixLibBypass | AixLib open-loop demand model, constant return temperature, with bypass |
DisHeatLib | DisHeatLib demand model, constant return temperature, linearized flow characteristic |
Simulation Run | CPU Time in s | Result Points | State Events | Jacobian Evaluations | States | Variables |
---|---|---|---|---|---|---|
main | 853 | 32,613 | 1851 | 8829 | 1000 | 15,396 |
corrLoad | 2098 | 62,313 | 2108 | 23,511 | 1054 | 15,450 |
fastDynamics | 994 | 37,678 | 2233 | 10,629 | 1000 | 15,396 |
noBypass | 485 | 29,917 | 1622 | 8004 | 946 | 15,288 |
hysteresis | 1555 | 54,027 | 9243 | 16,336 | 1000 | 15,396 |
AixLib | 419 | 28,715 | 1654 | 7018 | 1000 | 15,612 |
AixLibBypass | 1325 | 65,383 | 5371 | 24,769 | 1000 | 15,774 |
DisHeatLib | 1153 | 34,784 | 1924 | 7682 | 1054 | 16,422 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zipplies, J.; Orozaliev, J.; Jordan, U.; Vajen, K. Heat Consumer Model for Robust and Fast Simulations of District Heating Networks Using Modelica. Electronics 2024, 13, 1201. https://doi.org/10.3390/electronics13071201
Zipplies J, Orozaliev J, Jordan U, Vajen K. Heat Consumer Model for Robust and Fast Simulations of District Heating Networks Using Modelica. Electronics. 2024; 13(7):1201. https://doi.org/10.3390/electronics13071201
Chicago/Turabian StyleZipplies, Johannes, Janybek Orozaliev, Ulrike Jordan, and Klaus Vajen. 2024. "Heat Consumer Model for Robust and Fast Simulations of District Heating Networks Using Modelica" Electronics 13, no. 7: 1201. https://doi.org/10.3390/electronics13071201
APA StyleZipplies, J., Orozaliev, J., Jordan, U., & Vajen, K. (2024). Heat Consumer Model for Robust and Fast Simulations of District Heating Networks Using Modelica. Electronics, 13(7), 1201. https://doi.org/10.3390/electronics13071201