Shape Sensing for Continuum Robotics Using Optoelectronic Sensors with Convex Reflectors
Abstract
:1. Introduction
2. Design of a New Shape Sensing Mechanism
2.1. Design Concept
2.2. Shape Sensing Integration into Robotic Manipulator
3. Sensing Principle
3.1. Sensor Design Principle
3.2. Mathematical Theory
4. Experimental Platform
Sensor Calibration Platform
5. Results and Analysis
6. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yamauchi, Y.; Ambe, Y.; Nagano, H.; Konyo, M.; Bando, Y.; Ito, E.; Arnold, S.; Yamazaki, K.; Itoyama, K.; Okatani, T.; et al. Development of a continuum robot enhanced with distributed sensors for search and rescue. Robomech. J. 2022, 9, 8. [Google Scholar] [CrossRef]
- Dong, X.; Palmer, D.; Axinte, D.; Kell, J. In-situ repair/maintenance with a continuum robotic machine tool in confined space. J. Manuf. Process. 2019, 38, 313–318. [Google Scholar] [CrossRef]
- Dong, X.; Axinte, D.; Palmer, D.; Cobos, S.; Raffles, M.; Rabani, A.; Kell, J. Development of a slender continuum robotic system for on-wing inspection/repair of gas turbine engines. Robot. Comput. Integr. Manuf. 2017, 44, 218–229. [Google Scholar] [CrossRef]
- Burgner-Kahrs, J.; Rucker, D.C.; Choset, H. Continuum Robots for Medical Applications: A Survey. IEEE Trans. Robot. 2015, 31, 1261–1280. [Google Scholar] [CrossRef]
- Zhang, Z.; Shang, J.; Seneci, C.; Yang, G.Z. Snake robot shape sensing using micro-inertial sensors. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2023; pp. 831–836. [Google Scholar] [CrossRef]
- Lapusan, C.; Hancu, O.; Rad, C. Shape Sensing of Hyper-Redundant Robots Using an AHRS IMU Sensor Network. Sensors 2022, 22, 373. [Google Scholar] [CrossRef] [PubMed]
- Sofla, M.S.; Sadigh, M.J.; Zareinejad, M. Shape estimation of a large workspace continuum manipulator with fusion of inertial sensors. Mechatronics 2021, 80, 102684. [Google Scholar] [CrossRef]
- Dementyev, A.; Kao, H.L.C.; Paradiso, J.A. SensorTape: Modular and programmable 3D-aware dense sensor network on a tape. In Proceedings of the UIST 2015—28th Annual ACM Symposium on User Interface Software and Technology, Charlotte, NC, USA, 11–15 November 2015; pp. 649–658. [Google Scholar] [CrossRef]
- Shi, C.; Luo, X.; Qi, P.; Li, T.; Song, S.; Najdovski, Z.; Fukuda, T.; Ren, H. Shape Sensing Techniques for Continuum Robots in Minimally Invasive Surgery: A Survey. IEEE Trans. Biomed. Eng. 2017, 64, 1665–1678. [Google Scholar] [CrossRef] [PubMed]
- So, J.; Kim, U.; Kim, Y.B.; Seok, D.-Y.; Yang, S.Y.; Kim, K.; Park, J.H.; Hwang, S.T.; Gong, Y.J.; Choi, H.R. Shape Estimation of Soft Manipulator Using Stretchable Sensor. Cyborg Bionic Syst. 2021, 2021, 9843894. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, F.; Yang, Z.; Jiang, Z.; Wang, Z.; Liu, H. Shape Sensing for Continuum Robots by Capturing Passive Tendon Displacements with Image Sensors. IEEE Robot. Autom. Lett. 2022, 7, 3130–3137. [Google Scholar] [CrossRef]
- Jäckle, S.; Eixmann, T.; Schulz-Hildebrandt, H.; Hüttmann, G.; Pätz, T. Fiber optical shape sensing of flexible instruments for endovascular navigation. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 2137–2145. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Tan, Y.; Chen, Y.; Hong, L.; Zhou, Z. Investigation of sensitivity enhancing and temperature compensation for fiber Bragg grating (FBG)-based strain sensor. Opt. Fiber Technol. 2019, 48, 199–206. [Google Scholar] [CrossRef]
- Osman, D.; Du, X.; Li, W.; Noh, Y. Development of an Optical Shape Sensing Method Using Optoelectronic Sensors for Soft Flexible Robotic Manipulators in MIS. IEEE Trans. Med. Robot. Bionics 2022, 4, 343–347. [Google Scholar] [CrossRef]
- Osman, D.; Li, W.; Du, X.; Minton, T.; Noh, Y. Miniature Optical Joint Measurement Sensor for Robotic Application Using Curvature-Based Reflecting Surfaces. IEEE Sens. Lett. 2022, 6, 3501304. [Google Scholar] [CrossRef]
- Gaikwad, A.D.; Gawande, J.P.; Joshi, A.K.; Chile, R.H. An intensity-modulated optical fiber sensor with concave mirror for measurement of displacement. J. Opt. 2013, 42, 300–306. [Google Scholar] [CrossRef]
- Degani, A.; Choset, H.; Wolf, A.; Zenati, M.A. Highly articulated robotic probe for minimally invasive surgery. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 2006, ICRA 2006, Orlando, FL, USA, 15–19 May 2006. [Google Scholar] [CrossRef]
- Garbin, N.; Di Natali, C.; Buzzi, J.; De Momi, E.; Valdastri, P. Laparoscopic tissue retractor based on local magnetic actuation. J. Med. Devices 2015, 9, 011005. [Google Scholar] [CrossRef]
- Wang, Y.; Ju, F.; Cao, Y.; Yun, Y.; Wang, Y.; Bai, D.; Chen, B. An aero-engine inspection continuum robot with tactile sensor based on EIT for exploration and navigation in unknown environment. In Proceedings of the 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong, China, 8–12 July 2019. [Google Scholar] [CrossRef]
- Dong, X.; Wang, M.; Mohammad, A.; Ba, W.; Russo, M.; Norton, A.; Kell, J.; Axinte, D. Continuum robots collaborate for safe manipulation of high-temperature flame to enable repairs in challenging environments. IEEE/ASME Tran. Mechatron. 2022, 27, 4217–4220. [Google Scholar] [CrossRef]
- Liu, B.; Ozkan-Aydin, Y.; Goldman, D.I.; Hammond, F.L. Kirigami Skin Improves Soft Earthworm Robot Anchoring and Locomotion Under Cohesive Soil. In Proceedings of the 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), Seoul, Republic of Korea, 14–18 April 2019; pp. 828–833. [Google Scholar] [CrossRef]
- Das, R.; Babu, S.P.M.; Palagi, S.; Mazzolai, B. Soft Robotic Locomotion by Peristaltic Waves in Granular Media. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020; pp. 223–228. [Google Scholar] [CrossRef]
Orientation | % Error | RMS Tip Error (°) | Maximum Tip Error (°) |
---|---|---|---|
Pitch | 0.77 | 2.45 | 6.03 |
Roll | 0.21 | 3.27 | 6.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osman, D.; Du, X.; Minton, T.; Noh, Y. Shape Sensing for Continuum Robotics Using Optoelectronic Sensors with Convex Reflectors. Electronics 2024, 13, 1253. https://doi.org/10.3390/electronics13071253
Osman D, Du X, Minton T, Noh Y. Shape Sensing for Continuum Robotics Using Optoelectronic Sensors with Convex Reflectors. Electronics. 2024; 13(7):1253. https://doi.org/10.3390/electronics13071253
Chicago/Turabian StyleOsman, Dalia, Xinli Du, Timothy Minton, and Yohan Noh. 2024. "Shape Sensing for Continuum Robotics Using Optoelectronic Sensors with Convex Reflectors" Electronics 13, no. 7: 1253. https://doi.org/10.3390/electronics13071253
APA StyleOsman, D., Du, X., Minton, T., & Noh, Y. (2024). Shape Sensing for Continuum Robotics Using Optoelectronic Sensors with Convex Reflectors. Electronics, 13(7), 1253. https://doi.org/10.3390/electronics13071253