Overcoming Challenges in OLED Technology for Lighting Solutions
Abstract
:1. Introduction
2. OLED Lighting Market: Evolving Trends and Current Hurdles
3. Challenges in Light Color
4. Challenges in OLED Transparency
4.1. Transparent Conductive Oxides
4.2. Thin Metal Films
4.3. Performance of a Transparent Electrode
5. Challenges in Large Areas
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Waymouth, J.F. History of Light Sources. In Handbook of Advanced Lighting Technology; Karlicek, R., Sun, C.C., Zissis, G., Ma, R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 3–40. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, D. White OLED Materials. In Handbook of Advanced Lighting Technology; Karlicek, R., Sun, C.C., Zissis, G., Ma, R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 293–320. [Google Scholar] [CrossRef]
- Song, J.; Lee, H.; Jeong, E.G.; Choi, K.C.; Yoo, S. Organic Light-Emitting Diodes: Pushing toward the Limits and Beyond. Adv. Mater. 2020, 32, 1907539. [Google Scholar] [CrossRef] [PubMed]
- Kido, J.; Hongawa, K.; Okuyama, K.; Nagai, K. White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes. Appl. Phys. Lett. 1994, 64, 815–817. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Sun, R.G.; Meghdadi, F.; Leising, G.; Epstein, A.J. Multicolor multilayer light-emitting devices based on pyridine-containing conjugated polymers and para-sexiphenyl oligomer. Appl. Phys. Lett. 1999, 74, 3613–3615. [Google Scholar] [CrossRef]
- Phelan, G.M. OLED Lighting Hits the Market. Inf. Disp. 2018, 34, 10–15. [Google Scholar] [CrossRef]
- Liu, S.; Xie, W.; Lee, C.S. Organic light-emitting diodes, what’s next? Next Nanotechnol. 2023, 1, 100003. [Google Scholar] [CrossRef]
- Trivellin, N.; Buffolo, M.; De Santi, C.; Meneghesso, G.; Zanoni, E.; Meneghini, M. Optoelectronic technologies for lighting in automotive: State-of-the-art and perspectives. In Proceedings of the 2023 AEIT International Conference on Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE), Modena, Italy, 17–19 July 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Arneson, C.; Huang, X.; Forrest, S.R. Solid-State Lighting Using Side-by-Side White Phosphorescent Organic Light-Emitting Diodes. ACS Photonics 2023, 10, 526–533. [Google Scholar] [CrossRef]
- Miller, N.J.; Leon, F.A. OLED Lighting Products: Capabilities, Challenges, Potential; Pacific Northwest National Lab. (PNNL): Richland, WA, USA, 2016. [Google Scholar] [CrossRef]
- Kim, T.; Price, J.S.; Grede, A.; Lee, S.; Choi, G.; Guan, W.; Jackson, T.N.; Giebink, N.C. Kirigami-Inspired 3D Organic Light-Emitting Diode (OLED) Lighting Concepts. Adv. Mater. Technol. 2018, 3, 1800067. [Google Scholar] [CrossRef]
- OLEDWorks—OLED Lighting Installations. Available online: https://www.oledworks.com/inspiration/ (accessed on 1 December 2023).
- OLED Light Art Draws Attention to the Theater an der Elbe in Hamburg. Available online: https://www.ledinside.com/lighting (accessed on 1 December 2023).
- May, C.; Toerker, M.; Hesse, J.; Hauptmann, J.; Keibler-Willner, C.; Philipp, A.; Wieczorek, M. 8-3: Invited Paper: OLED Lighting Design and Roll-to-Roll Manufacturing. SID Symp. Dig. Tech. Pap. 2020, 51, 90–92. [Google Scholar] [CrossRef]
- Xu, T.; Zhou, J.G.; Fung, M.K.; Meng, H. Simplified efficient warm white tandem organic light-emitting devices by ultrathin emitters using energy transfer from exciplexes. Org. Electron. 2018, 63, 369–375. [Google Scholar] [CrossRef]
- Avci, A.N.; Akbay, S. A Review based on OLED Lighting Conditions and Human Circadian System. Cult. E Sci. Del Colore-Color Cult. Sci. 2023, 15, 7–12. [Google Scholar] [CrossRef]
- Imbrasas, P.; Lenk, S.; Reineke, S. Organic light-emitting diodes with split recombination zones: A concept for versatile color tuning. Org. Electron. 2020, 78, 105558. [Google Scholar] [CrossRef]
- Li, Y.; Liu, N.; Zhou, P.; Lan, W.; Pu, H.; Liao, Y. Efficient and Color-tunable Organic Light-emitting Diodes for Rear Light Application on the Motor Vehicle. Mater. Sci. 2021, 27, 264–268. [Google Scholar] [CrossRef]
- Migliaccio, L.; Aprano, S.; Iannuzzi, L.; Maglione, M.G.; Tassini, P.; Minarini, C.; Manini, P.; Pezzella, A. Eumelanin–PEDOT:PSS Complementing En Route to Mammalian-Pigment-Based Electrodes: Design and Fabrication of an ITO-Free Organic Light-Emitting Device. Adv. Electron. Mater. 2017, 3, 1600342. [Google Scholar] [CrossRef]
- Manini, P.; Criscuolo, V.; Ricciotti, L.; Pezzella, A.; Barra, M.; Cassinese, A.; Crescenzi, O.; Maglione, M.G.; Tassini, P.; Minarini, C.; et al. Melanin-Inspired Organic Electronics: Electroluminescence in Asymmetric Triazatruxenes. ChemPlusChem 2015, 80, 898. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hauptmann, J.; May, C.; Hofstetter, Y.J.; Vaynzof, Y.; Müller, T. Roll-to-roll fabrication of highly transparent Ca:Ag top-electrode towards flexible large-area OLED lighting application. Flex. Print. Electron. 2021, 6, 035001. [Google Scholar] [CrossRef]
- Pode, R.; Diouf, B. OLED Lighting Technology. In Solar Lighting; Springer: London, UK, 2011; pp. 97–149. [Google Scholar] [CrossRef]
- Reineke, S.; Thomschke, M.; Lüssem, B.; Leo, K. White organic light-emitting diodes: Status and perspective. Rev. Mod. Phys. 2013, 85, 1245. [Google Scholar] [CrossRef]
- Ma, D. White OLED Devices. In Handbook of Advanced Lighting Technology; Karlicek, R., Sun, C.C., Zissis, G., Ma, R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 321–361. [Google Scholar] [CrossRef]
- Huseynova, G.; Lee, J.; Kim, Y.H.; Lee, J. Transparent Organic Light-Emitting Diodes: Advances, Prospects, and Challenges. Adv. Opt. Mater. 2021, 9, 2002040. [Google Scholar] [CrossRef]
- Fiorillo, M.; Rubino, A.; Santoro, E.; Maglione, M.; Minarini, C.; Aprano, S.; Tassini, P.; Sico, G. Evaluation of the Stability of Different Encapsulated Blue OLEDs; Institution of Engineering and Technology: Turin, Italy, 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Swayamprabha, S.S.; Dubey, D.K.; Shahnawaz; Yadav, R.A.K.; Nagar, M.R.; Sharma, A.; Tung, F.; Jou, J. Approaches for Long Lifetime Organic Light Emitting Diodes. Adv. Sci. 2021, 8, 2254. [Google Scholar] [CrossRef]
- Jeon, Y.; Lee, H.; Kim, H.; Kwon, J.H. A Review of Various Attempts on Multi-Functional Encapsulation Technologies for the Reliability of OLEDs. Micromachines 2022, 13, 1478. [Google Scholar] [CrossRef]
- Ramasamy, E.; Karthikeyan, V.; Rameshkumar, K.; Veerappan, G. Glass-to-glass encapsulation with ultraviolet light curable epoxy edge sealing for stable perovskite solar cells. Mater. Lett. 2019, 250, 51–54. [Google Scholar] [CrossRef]
- Spindler, J.; Kondakova, M.; Boroson, M.; Büchel, M.; Eser, J.; Knipping, J. 84-1: Invited Paper: Advances in High Efficacy and Flexible OLED Lighting. SID Symp. Dig. Tech. Pap. 2018, 49, 1135–1138. [Google Scholar] [CrossRef]
- Nowy, S.; Krummacher, B.C.; Frischeisen, J.; Reinke, N.A.; Brütting, W. Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency. J. Appl. Phys. 2008, 104, 123109. [Google Scholar] [CrossRef]
- Kim, J.Y.; Joo, C.W.; Lee, J.; Woo, J.C.; Oh, J.Y.; Baek, N.S.; Chu, H.Y.; Lee, J.I. Save energy on OLED lighting by a simple yet powerful technique. RSC Adv. 2015, 5, 8415–8421. [Google Scholar] [CrossRef]
- Zhou, R.; Chung, H.S.H.; Zhang, R. An Inductive Power Transfer System for Driving Multiple OLED Light Panels. IEEE Trans. Power Electron. 2016, 31, 7131–7147. [Google Scholar] [CrossRef]
- Bender, V.C.; Barth, N.D.; Mendes, F.B.; Pinto, R.A.; Alonso, J.M.; Marchesan, T.B. A Hardware Emulator for OLED Panels Applied to Lighting Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 1252–1258. [Google Scholar] [CrossRef]
- Lu, M.M.; Ngai, P. OLED Requirements for Solid-State Lighting. Inf. Disp. 2010, 26, 10–13. [Google Scholar] [CrossRef]
- Forrest, S.; Bradley, D.; Thompson, M. Measuring the Efficiency of Organic Light-Emitting Devices. Adv. Mater. 2003, 15, 1043–1048. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, T.; Chen, X.; Bai, F.; Genco, A.; Wang, H.; Chen, C.; Chen, P.; Mazzeo, M.; Zhang, Y.; et al. Highly Conductive Alkaline-Earth Metal Electrodes: The Possibility of Maintaining Both Low Work Function and Surface Stability for Organic Electronics. Adv. Opt. Mater. 2020, 8, 2000206. [Google Scholar] [CrossRef]
- Pode, R. Organic light emitting diode devices: An energy efficient solid state lighting for applications. Renew. Sustain. Energy Rev. 2020, 133, 110043. [Google Scholar] [CrossRef]
- Thejokalyani, N.; Dhoble, S. Importance of Eco-Friendly OLED Lighting. Defect Diffus. Forum 2014, 357, 1–27. [Google Scholar] [CrossRef]
- Kang, J.; Cho, Y.; Jang, W. Long-Term Reliability Characteristics of OLED Panel and Luminaires for General Lighting Applications. Appl. Sci. 2020, 11, 74. [Google Scholar] [CrossRef]
- Liu, H.; Liu, F.; Lu, P. Multiple strategies towards high-efficiency white organic light-emitting diodes by the vacuum deposition method. J. Mater. Chem. C 2020, 8, 5636–5661. [Google Scholar] [CrossRef]
- Chowdhury, D.Q.; Garner, S.M.; Lewis, S.C. Application of OLED for Automotive Lighting. In Proceedings of the 2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), Kyoto, Japan, 2–5 July 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Zou, S.J.; Shen, Y.; Xie, F.M.; Chen, J.D.; Li, Y.Q.; Tang, J.X. Recent advances in organic light-emitting diodes: Toward smart lighting and displays. Mater. Chem. Front. 2020, 4, 788–820. [Google Scholar] [CrossRef]
- Duggal, A.R.; Shiang, J.J.; Foust, D.F.; Turner, L.G.; Nealon, W.F.; Bortscheller, J.C. 4.1: Invited Paper: Large Area White OLEDs. SID Symp. Dig. Tech. Pap. 2005, 36, 28–31. [Google Scholar] [CrossRef]
- ORBEOSTM for OLED Lighting. Available online: https://www.mouser.it/datasheet/2/588/cdw031orbeos-2891335.pdf (accessed on 1 December 2023).
- OLED-Info: The OLED Experts. Available online: https://www.oled-info.com/ (accessed on 1 December 2023).
- Komoda, T.; Tsuji, H.; Ito, N.; Nishimori, T.; Ide, N. 66.4: Invited Paper: High-Quality White OLEDs and Resource Saving Fabrication Processes for Lighting Application. SID Symp. Dig. Tech. Pap. 2010, 41, 993–996. [Google Scholar] [CrossRef]
- Verbatim. Available online: https://www.verbatim.com/index/newsroom.php (accessed on 1 December 2023).
- Levermore, P.A.; Adamovich, V.; Rajan, K.; Yeager, W.; Lin, C.; Xia, S.; Kottas, G.S.; Weaver, M.S.; Kwong, R.; Ma, R.; et al. 52.4: Highly Efficient Phosphorescent OLED Lighting Panels for Solid State Lighting. SID Symp. Dig. Tech. Pap. 2010, 41, 786–789. [Google Scholar] [CrossRef]
- Tsujimura, T. OLED Lighting. In OLED Display Fundamentals and Applications; John Wiley & Sons, Ltd.: Hoboken, NI, USA, 2017; Chapter 9; pp. 255–276. [Google Scholar] [CrossRef]
- Jang, S.; Lee, Y.; Park, M. 44.1: Invited Paper: OLED Lighting for General Lighting Applications. SID Symp. Dig. Tech. Pap. 2015, 46, 661–663. [Google Scholar] [CrossRef]
- Spindler, J.; Kondakova, M.; Boroson, M.; Hamer, J.; Gohri, V.; Büchel, M.; Ruske, M.; Meulancamp, E. 24-2: Invited Paper: High Brightness OLED Lighting. SID Symp. Dig. Tech. Pap. 2016, 47, 294–297. [Google Scholar] [CrossRef]
- Cooper, G.D.; Monickam, S. 84-2: Invited Paper: High Refractive Index Light Extraction for OLED Lighting. SID Symp. Dig. Tech. Pap. 2018, 49, 1139–1142. [Google Scholar] [CrossRef]
- Kim, H.; Shin, H.; Park, J.; Choi, Y.; Park, J. Statistical modeling and reliability prediction for transient luminance degradation of flexible OLEDs. In Proceedings of the 2018 IEEE International Reliability Physics Symposium (IRPS), Burlingame, CA, USA, 11–15 March 2018; pp. 3C.7–1–3C.7–6. [Google Scholar] [CrossRef]
- Alchaddoud, A.; Canale, L.; Ibrahem, G.; Zissis, G. Photometric and Electrical Characterizations of Large-Area OLEDs Aged Under Thermal and Electrical Stresses. IEEE Trans. Ind. Appl. 2019, 55, 991–995. [Google Scholar] [CrossRef]
- Salameh, F.; Al Haddad, A.; Picot, A.; Canale, L.; Zissis, G.; Chabert, M.; Maussion, P. Modeling the Luminance Degradation of OLEDs Using Design of Experiments. IEEE Trans. Ind. Appl. 2019, 55, 6548–6558. [Google Scholar] [CrossRef]
- IEC 62922:2016/AMD1:2021 ED1. Available online: https://www.iec.ch/dyn/www/f?p=103:38:14509173073973::::FSP_ORG_ID,FSP_APEX_PAGE,FSP_PROJECT_ID:1340,23,101920 (accessed on 1 December 2023).
- Yeom, J.M.; Jung, H.J.; Choi, S.Y.; Lee, D.S.; Lim, S.R. Environmental effects of the technology transition from liquid—Crystal display (LCD) to organic light-emitting diode (OLED) display from an e-waste management perspective. Int. J. Environ. Res. 2018, 12, 479–488. [Google Scholar] [CrossRef]
- Cocchi, M.; Bertoldo, M.; Seri, M.; Maccagnani, P.; Summonte, C.; Buoso, S.; Belletti, G.; Dinelli, F.; Capelli, R. Fully Recyclable OLEDs Built on a Flexible Biopolymer Substrate. Acs Sustain. Chem. Eng. 2021, 9, 12733–12737. [Google Scholar] [CrossRef]
- Hanif, A. Sustainable use of organic light-emitting diode (OLED) and liquid crystal display (LCD) glass wastes as cement replacement in concrete. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Le Rendu, P.; Nguyen, T.; Carrois, L. Cellulose acetate and PVDC used as protective layers for organic diodes. Synth. Met. 2003, 138, 285–288. [Google Scholar] [CrossRef]
- Najafabadi, E.; Zhou, Y.H.; Knauer, K.A.; Fuentes-Hernandez, C.; Kippelen, B. Efficient organic light-emitting diodes fabricated on cellulose nanocrystal substrates. Appl. Phys. Lett. 2014, 105, 063305. [Google Scholar] [CrossRef]
- Dong, H.; Wu, Z.; Jiang, Y.; Liu, W.; Li, X.; Jiao, B.; Abbas, W.; Hou, X. A Flexible and Thin Graphene/Silver Nanowires/Polymer Hybrid Transparent Electrode for Optoelectronic Devices. Acs Appl. Mater. Interfaces 2016, 8, 31212–31221. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, Y.; Liu, Y.; Song, T.; Zhang, K.Q.; Liao, L.; Sun, B. Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate. Semicond. Sci. Technol. 2015, 30, 104004. [Google Scholar] [CrossRef]
- Hendler, N.; Wildeman, J.; Mentovich, E.D.; Schnitzler, T.; Belgorodsky, B.; Prusty, D.K.; Rimmerman, D.; Herrmann, A.; Richter, S. Efficient Separation of Conjugated Polymers Using a Water Soluble Glycoprotein Matrix: From Fluorescence Materials to Light Emitting Devices. Macromol. Biosci. 2014, 14, 320–326. [Google Scholar] [CrossRef]
- Gomez, E.F.; Venkatraman, V.; Grote, J.G.; Steckl, A.J. DNA bases thymine and adenine in bio-organic light emitting diodes. Sci. Rep. 2014, 4, 7105. [Google Scholar] [CrossRef]
- Gomez, E.F.; Venkatraman, V.; Grote, J.G.; Steckl, A.J. Exploring the Potential of Nucleic Acid Bases in Organic Light Emitting Diodes. Adv. Mater. 2015, 27, 7552–7562. [Google Scholar] [CrossRef]
- Jürgensen, N.; Ackermann, M.; Marszalek, T.; Zimmermann, J.; Morfa, A.J.; Pisula, W.; Bunz, U.H.F.; Hinkel, F.; Hernandez-Sosa, G. Solution-Processed Bio-OLEDs with a Vitamin-Derived Riboflavin Tetrabutyrate Emission Layer. Acs Sustain. Chem. Eng. 2017, 5, 5368–5372. [Google Scholar] [CrossRef]
- Nakamura, K.; Minami, H.; Sagara, A.; Itamoto, N.; Kobayashi, N. Enhanced red emissions of europium(iii) chelates in DNA–CTMA complexes. J. Mater. Chem. C 2018, 6, 4516–4522. [Google Scholar] [CrossRef]
- Zissis, G.; Bertoldi, P.; Serrenho, T. Update on the Status of LED-Lighting World Market Since 2018; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar] [CrossRef]
- Forrest, S.R. From Deposition to Encapsulation: Roll-to-Roll Manufacturing of Organic Light Emitting Devices for Lighting (Final Report); University of Michigan: Ann Arbor, MI, USA, 2023. [Google Scholar] [CrossRef]
- Qu, B.; Chen, Z.; Lahann, L.; Forrest, S.R. Cost Estimates of Roll-to-Roll Production of Organic Light Emitting Devices for Lighting. ACS Photonics 2023, 10, 1850–1858. [Google Scholar] [CrossRef]
- Gather, M.C.; Köhnen, A.; Meerholz, K. White Organic Light-Emitting Diodes. Adv. Mater. 2011, 23, 233–248. [Google Scholar] [CrossRef]
- Rippa, M.; Capasso, R.; Petti, L.; Nenna, G.; Mauro, A.D.G.D.; Maglione, M.G.; della Noce, M.; Minarini, C. Photonic quasi crystals to enhance light extraction efficiency for White OLEDs applications. In Proceedings of the 2014 Fotonica AEIT Italian Conference on Photonics Technologies, Naples, Italy, 12–14 May 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Rippa, M.; Capasso, R.; Petti, L.; Nenna, G.; Mauro, A.D.G.D.; Maglione, M.G.; Minarini, C. Nanostructured PEDOT:PSS film with two-dimensional photonic quasi crystals for efficient white OLED devices. J. Mater. Chem. C 2015, 3, 147–152. [Google Scholar] [CrossRef]
- Liguori, R.; Sheets, W.; Facchetti, A.; Rubino, A. Light- and bias-induced effects in pentacene-based thin film phototransistors with a photocurable polymer dielectric. Org. Electron. 2016, 28, 147–154. [Google Scholar] [CrossRef]
- Liguori, R.; Usta, H.; Fusco, S.; Facchetti, A.; Licciardo, G.D.; Benedetto, L.D.; Rubino, A. Insights Into Interface Treatments in p-Channel Organic Thin-Film Transistors Based on a Novel Molecular Semiconductor. IEEE Trans. Electron Devices 2017, 64, 2338–2344. [Google Scholar] [CrossRef]
- Xiao, L.; Chen, Z.; Qu, B.; Luo, J.; Kong, S.; Gong, Q.; Kido, J. Recent Progresses on Materials for Electrophosphorescent Organic Light-Emitting Devices. Adv. Mater. 2011, 23, 926–952. [Google Scholar] [CrossRef]
- Turner, E.; Bakken, N.; Li, J. Cyclometalated Platinum Complexes with Luminescent Quantum Yields Approaching 100%. Inorg. Chem. 2013, 52, 7344–7351. [Google Scholar] [CrossRef]
- Xue, C.; Lin, H.; Zhang, G.; Hu, Y.; Jiang, W.; Lang, J.; Wang, D.; Xing, G. Recent advances in thermally activated delayed fluorescence for white OLEDs applications. J. Mater. Sci. Mater. Electron. 2020, 31, 4444–4462. [Google Scholar] [CrossRef]
- Liu, F.; Liu, H.; Tang, X.; Ren, S.; He, X.; Li, J.; Du, C.; Feng, Z.; Lu, P. Novel blue fluorescent materials for high-performance nondoped blue OLEDs and hybrid pure white OLEDs with ultrahigh color rendering index. Nano Energy 2020, 68, 104325. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, W.; Cao, Q.; Zhou, T.; Ge, F.; Xu, H.; Wang, J.; Ban, X.; Zhang, T. Turning the energy channel of side-chain TADF polymers by monomer optimization for high-efficiency solution-processed white OLEDs. J. Lumin. 2023, 263, 119966. [Google Scholar] [CrossRef]
- Gärditz, C.; Paetzold, R.; Buchhauser, D.; Bathelt, R.; Gieres, G.; Tschamber, C.; Hunze, A.; Heuser, K.; Winnacker, A.; Amelung, J.; et al. OLED lighting based on white broadband copolymer emitters. In Proceedings of the Volume 5937, Organic Light-Emitting Materials and Devices IX, San Diego, CA, USA, 31 July–4 August 2005; p. 59370L. [Google Scholar] [CrossRef]
- Gioti, M.; Kokkinos, D.; Stavrou, K.; Simitzi, K.; Andreopoulou, A.; Laskarakis, A.; Kallitsis, J.; Logothetidis, S. Fabrication and Study of White-Light OLEDs Based on Novel Copolymers with Blue, Yellow, and Red Chromophores. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2019, 13, 1800419. [Google Scholar] [CrossRef]
- Tselekidou, D.; Papadopoulos, K.; Kyriazopoulos, V.; Andrikopoulos, K.C.; Andreopoulou, A.K.; Kallitsis, J.K.; Laskarakis, A.; Logothetidis, S.; Gioti, M. Photophysical and Electro-Optical Properties of Copolymers Bearing Blue and Red Chromophores for Single-Layer White OLEDs. Nanomaterials 2021, 11, 2629. [Google Scholar] [CrossRef]
- Ban, X.; Chen, F.; Pan, J.; Liu, Y.; Zhu, A.; Jiang, W.; Sun, Y. Exciplex Formation and Electromer Blocking for Highly Efficient Blue Thermally Activated Delayed Fluorescence OLEDs with All-Solution-Processed Organic Layers. Chem.—A Eur. J. 2020, 26, 3090–3102. [Google Scholar] [CrossRef]
- Chang, Y.C.; Chang, J.Y.; Liou, B.T.; Huang, M.F.; Kuo, Y.K. Effect of exciton-blocking layer on the characteristics of multilayer white organic light-emitting diodes. In Proceedings of the Volume 11683, Organic Photonic Materials and Devices XXIII, SPIE, Online, 6–12 March 2021; p. 33. [Google Scholar] [CrossRef]
- Miao, Y.; Zhao, B.; Gao, Z.; Shi, H.; Tao, P.; Wu, Y.; Wang, K.; Wang, H.; Xu, B.; Zhu, F. A novel intramolecular charge transfer blue fluorophor for high color stability hybrid di-chromatic white organic light-emitting diodes. Org. Electron. 2017, 42, 1–7. [Google Scholar] [CrossRef]
- Yang, H.; Peng, X.; Cao, C.; Wu, L.; Chen, N.; Zhang, X.; Xie, W.; Tong, Q.; Wu, Z. A deep blue fluorescent emitter functioning as host material in highly efficient phosphorescent and hybrid white organic light-emitting devices. Org. Electron. 2020, 85, 105848. [Google Scholar] [CrossRef]
- Sun, Y.; Giebink, N.C.; Kanno, H.; Ma, B.; Thompson, M.E.; Forrest, S.R. Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 2006, 440, 908–912. [Google Scholar] [CrossRef]
- Schwartz, G.; Pfeiffer, M.; Reineke, S.; Walzer, K.; Leo, K. Harvesting Triplet Excitons from Fluorescent Blue Emitters in White Organic Light-Emitting Diodes. Adv. Mater. 2007, 19, 3672–3676. [Google Scholar] [CrossRef]
- Hofmann, S.; Furno, M.; Lüssem, B.; Leo, K.; Gather, M.C. Investigation of triplet harvesting and outcoupling efficiency in highly efficient two-color hybrid white organic light-emitting diodes. Phys. Status Solidi (A) 2013, 210, 1467–1475. [Google Scholar] [CrossRef]
- Ren, Q.; Zhao, Y.; Liu, C.; Zhan, H.; Cheng, Y.; Li, W. Efficient triplet harvest for orange-red and white OLEDs based exciplex host with different donor/acceptor ratios. Opt. Mater. 2021, 113, 110907. [Google Scholar] [CrossRef]
- Chen, S.; Kwok, H.S. Top-emitting white organic light-emitting diodes with a color conversion cap layer. Org. Electron. 2011, 12, 677–681. [Google Scholar] [CrossRef]
- Jo, D.S.; Dang, T.M.L.; Tran, T.T.; Kim, M.J.; Chung, H.K.; Jung, S.; Cho, S.M.; Chae, H.; Yoon, D.H. Fabrication of color conversion layers using adhesive transfer of phosphor particles for improving light extraction efficiency and uniformity of down-conversion white OLED. Opt. Mater. 2021, 114, 110772. [Google Scholar] [CrossRef]
- Botta, A.; Pragliola, S.; Venditto, V.; Rubino, A.; Aprano, S.; Mauro, A.D.G.D.; Maglione, M.G.; Minarini, C. Synthesis, characterization, and use as emissive layer of white organic light emitting diodes of the highly isotactic poly(N-pentenyl-carbazole). Polym. Compos. 2015, 36, 1110–1117. [Google Scholar] [CrossRef]
- Botta, A.; Pragliola, S.; Capacchione, C.; Rubino, A.; Liguori, R.; Mauro, A.D.G.D.; Venditto, V. Synthesis of poly(4-(N-carbazolyl)methyl styrene)s: Tailoring optical properties through stereoregularity. Eur. Polym. J. 2017, 88, 246–256. [Google Scholar] [CrossRef]
- Liguori, R.; Botta, A.; Pragliola, S.; Rubino, A.; Venditto, V.; Velardo, A.; Aprano, S.; Maglione, M.G.; Prontera, C.T.; Mauro, A.D.G.D.; et al. Study of the electroluminescence of highly stereoregular poly(N-pentenyl-carbazole) for blue and white OLEDs. Semicond. Sci. Technol. 2017, 32, 065006. [Google Scholar] [CrossRef]
- Botta, A.; Costabile, C.; Venditto, V.; Pragliola, S.; Liguori, R.; Rubino, A.; Alberga, D.; Savarese, M.; Adamo, C. Optoeletronic properties of poly(N-alkenyl-carbazole)s driven by polymer stereoregularity. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 242–251. [Google Scholar] [CrossRef]
- Liguori, R.; Rubino, A.; Botta, A.; Pragliola, S. Blue and white OLEDs with highly stereoregular polymers. In Proceedings of the 2017 International Semiconductor Conference (CAS), Sinaia, Romania, 11–14 October 2017; pp. 79–82. [Google Scholar] [CrossRef]
- Liguori, R.; Botta, A.; Rubino, A.; Pragliola, S.; Venditto, V. Stereoregular polymers with pendant carbazolyl groups: Synthesis, properties and optoelectronic applications. Synth. Met. 2018, 246, 185–194. [Google Scholar] [CrossRef]
- Jou, J.H.; Chen, P.W.; Chen, Y.L.; Jou, Y.C.; Tseng, J.R.; Wu, R.Z.; Hsieh, C.Y.; Hsieh, Y.C.; Joers, P.; Chen, S.H.; et al. OLEDs with chromaticity tunable between dusk-hue and candle-light. Org. Electron. 2013, 14, 47–54. [Google Scholar] [CrossRef]
- Spindler, J. Mask Free OLED Fabrication Process for Non-Tunable and Tunable White OLED Panels; OLEDWorks LLC: Rochester, NY, USA, 2021. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, R.; Gao, Y.; Leck, K.S.; Yang, X.; Liu, S.; Abiyasa, A.P.; Divayana, Y.; Mutlugun, E.; Tan, S.T.; et al. AC-driven, color- and brightness-tunable organic light-emitting diodes constructed from an electron only device. Org. Electron. 2013, 14, 3195–3200. [Google Scholar] [CrossRef]
- Chen, Z.; Ho, C.; Wang, L.; Wong, W. Single-Molecular White-Light Emitters and Their Potential WOLED Applications. Adv. Mater. 2020, 32, 1903269. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.W.; Lin, T.A.; Lee, W.K.; Lu, C.H.; Chatterjee, T.; Chou, C.H.; Wong, K.T.; Wu, C.C. Analyses of emission efficiencies of white organic light-emitting diodes having multiple emitters in single emitting layer. Org. Electron. 2022, 104, 106474. [Google Scholar] [CrossRef]
- Chang, Y.; Ren, Q.; Zhang, R.; Zhao, Y.; Wang, H. A low cost and simple structured WOLED device based on exciplex host and full fluorescent materials. Solid-State Electron. 2023, 208, 108753. [Google Scholar] [CrossRef]
- Ameri, L.; Cao, L.; Tan, X.; Li, J. Efficient, Color-Stable, and Long-Lived White Organic Light-Emitting Diodes Utilizing Phosphorescent Molecular Aggregates. Adv. Mater. 2023, 35, 2208361. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.H.; Yi, L.B.; Chu, S.Y.; Kao, P.C. High-performance warm-white OLEDs using interfacial exciplex energy transfer with external quantum efficiency exceeding 30%. Synth. Met. 2024, 301, 117530. [Google Scholar] [CrossRef]
- Cao, W.; Li, J.; Chen, H.; Xue, J. Transparent electrodes for organic optoelectronic devices: A review. J. Photonics Energy 2014, 4, 040990. [Google Scholar] [CrossRef]
- Huseynova, G.; Kim, Y.H.; Lee, J.H.; Lee, J. Emission characteristics of transparent organic light-emitting diodes with molybdenum oxide capping layers. Synth. Met. 2020, 262, 116335. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, T.; Zhu, Q.; Zhang, X.; Ethiraj, A.S.; Geng, W.M.; Geng, H.Z. High-Performance Transparent PEDOT: PSS/CNT Films for OLEDs. Nanomaterials 2021, 11, 2067. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Shriwastava, S.; Kumar, S.; Bhatt, K.; Tripathi, C.C. Alternative transparent conducting electrode materials for flexible optoelectronic devices. Opto-Electron. Rev. 2018, 26, 223–235. [Google Scholar] [CrossRef]
- Zeng, X.Y.; Tang, Y.Q.; Cai, X.Y.; Tang, J.X.; Li, Y.Q. Solution-processed OLEDs for printing displays. Mater. Chem. Front. 2023, 7, 1166–1196. [Google Scholar] [CrossRef]
- Woo, Y. Transparent Conductive Electrodes Based on Graphene-Related Materials. Micromachines 2018, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Adetayo, A.E.; Ahmed, T.N.; Zakhidov, A.; Beall, G.W. Improvements of Organic Light-Emitting Diodes Using Graphene as an Emerging and Efficient Transparent Conducting Electrode Material. Adv. Opt. Mater. 2021, 9, 2002102. [Google Scholar] [CrossRef]
- Shi, D.; Resasco, D.E. Study of the growth of conductive single-wall carbon nanotube films with ultra-high transparency. Chem. Phys. Lett. 2011, 511, 356–362. [Google Scholar] [CrossRef]
- Seo, T.H.; Lee, S.; Min, K.H.; Chandramohan, S.; Park, A.H.; Lee, G.H.; Park, M.; Suh, E.K.; Kim, M.J. The role of graphene formed on silver nanowire transparent conductive electrode in ultra-violet light emitting diodes. Sci. Rep. 2016, 6, 29464. [Google Scholar] [CrossRef] [PubMed]
- Choo, D.C.; Kim, T.W. Degradation mechanisms of silver nanowire electrodes under ultraviolet irradiation and heat treatment. Sci. Rep. 2017, 7, 1696. [Google Scholar] [CrossRef] [PubMed]
- Celle, C.; Cabos, A.; Fontecave, T.; Laguitton, B.; Benayad, A.; Guettaz, L.; Pélissier, N.; Nguyen, V.H.; Bellet, D.; Muñoz-Rojas, D.; et al. Oxidation of copper nanowire based transparent electrodes in ambient conditions and their stabilization by encapsulation: Application to transparent film heaters. Nanotechnology 2018, 29, 085701. [Google Scholar] [CrossRef] [PubMed]
- Hadjab, M.; Guskova, O.; Bennacer, H.; Ziane, M.I.; Larbi, A.H.; Saeed, M. Ground-state properties of p-type delafossite transparent conducting oxides 2H-CuMO2 (M = Al, Sc and Y): DFT calculations. Mater. Today Commun. 2022, 32, 103995. [Google Scholar] [CrossRef]
- Blair, S.F.J.; Male, J.S.; Cavill, S.A.; Reardon, C.P.; Krauss, T.F. Photonic Characterisation of Indium Tin Oxide as a Function of Deposition Conditions. Nanomaterials 2023, 13, 1990. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Jiao, P.; Cheng, Y.; Xu, H.; Zhu, G.; Zhao, Y.; Jiang, K.; Zhang, X.; Su, Y. ITO films with different preferred orientations prepared by DC magnetron sputtering. Opt. Mater. 2022, 134, 113040. [Google Scholar] [CrossRef]
- Li, H.; Ruan, C.; Sun, Q.; Rui, M.; Wang, S.; Xia, G. Large-area rod-coated indium–tin–oxide transparent conductive films for low-cost electronics. J. Mater. Sci. Mater. Electron. 2023, 34, 2222. [Google Scholar] [CrossRef]
- Dong, L.; Zhu, G.S.; Xu, H.R.; Jiang, X.P.; Zhang, X.Y.; Zhao, Y.Y.; Yan, D.L.; Yuan, L.; Yu, A.B. Preparation of indium tin oxide (ITO) thin film with (400) preferred orientation by sol–gel spin coating method. J. Mater. Sci. Mater. Electron. 2019, 30, 8047–8054. [Google Scholar] [CrossRef]
- Lei, H.; Wang, M.; Hoshi, Y.; Uchida, T.; Kobayashi, S.; Sawada, Y. Comparative studies on damages to organic layer during the deposition of ITO films by various sputtering methods. Appl. Surf. Sci. 2013, 285, 389–394. [Google Scholar] [CrossRef]
- Gu, G.; Bulović, V.; Burrows, P.E.; Forrest, S.R.; Thompson, M.E. Transparent organic light emitting devices. Appl. Phys. Lett. 1996, 68, 2606–2608. [Google Scholar] [CrossRef]
- Burrows, P.E.; Gu, G.; Forrest, S.R.; Vicenzi, E.P.; Zhou, T.X. Semitransparent cathodes for organic light emitting devices. J. Appl. Phys. 2000, 87, 3080–3085. [Google Scholar] [CrossRef]
- Saikia, D.; Sarma, R. Characterization of organic light-emitting diode using a rubrene interlayer between electrode and hole transport layer. Bull. Mater. Sci. 2020, 43, 35. [Google Scholar] [CrossRef]
- Meyer, J.; Winkler, T.; Hamwi, S.; Schmale, S.; Johannes, H.; Weimann, T.; Hinze, P.; Kowalsky, W.; Riedl, T. Transparent Inverted Organic Light-Emitting Diodes with a Tungsten Oxide Buffer Layer. Adv. Mater. 2008, 20, 3839–3843. [Google Scholar] [CrossRef]
- Chen, H.; Qiu, C.; Wong, M.; Kwok, H.S. DC sputtered indium-tin oxide transparent cathode for organic light-emitting diode. IEEE Electron Device Lett. 2003, 24, 315–317. [Google Scholar] [CrossRef]
- Kanno, H.; Sun, Y.; Forrest, S.R. High-efficiency top-emissive white-light-emitting organic electrophosphorescent devices. Appl. Phys. Lett. 2005, 86. [Google Scholar] [CrossRef]
- Chauhan, R.N.; Tiwari, N.; Anand, R.S.; Kumar, J. Development of Al-doped ZnO thin film as a transparent cathode and anode for application in transparent organic light-emitting diodes. RSC Adv. 2016, 6, 86770–86781. [Google Scholar] [CrossRef]
- de Oliveira Xavier Silva, H.; Faraco, T.A.; Maciel, I.O.; Quirino, W.G.; Fragneaud, B.; Pereira, P.G.; Legnani, C. High optoelectronic quality of AZO films grown by RF-magnetron sputtering for organic electronics applications. Semicond. Sci. Technol. 2023, 38, 065004. [Google Scholar] [CrossRef]
- Lee, J.Y.; Connor, S.T.; Cui, Y.; Peumans, P. Solution-Processed Metal Nanowire Mesh Transparent Electrodes. Nano Lett. 2008, 8, 689–692. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Zhang, Q.; Yu, R.; Lu, C. A New Transparent Conductor: Silver Nanowire Film Buried at the Surface of a Transparent Polymer. Adv. Mater. 2010, 22, 4484–4488. [Google Scholar] [CrossRef] [PubMed]
- Luka, G.; Krajewski, T.A.; Witkowski, B.S.; Wisz, G.; Virt, I.S.; Guziewicz, E.; Godlewski, M. Aluminum-doped zinc oxide films grown by atomic layer deposition for transparent electrode applications. J. Mater. Sci. Mater. Electron. 2011, 22, 1810–1815. [Google Scholar] [CrossRef]
- Bhosle, V.; Prater, J.T.; Yang, F.; Burk, D.; Forrest, S.R.; Narayan, J. Gallium-doped zinc oxide films as transparent electrodes for organic solar cell applications. J. Appl. Phys. 2007, 102, 023501. [Google Scholar] [CrossRef]
- De, S.; King, P.J.; Lyons, P.E.; Khan, U.; Coleman, J.N. Size Effects and the Problem with Percolation in Nanostructured Transparent Conductors. ACS Nano 2010, 4, 7064–7072. [Google Scholar] [CrossRef] [PubMed]
- Formica, N.; Ghosh, D.S.; Chen, T.L.; Eickhoff, C.; Bruder, I.; Pruneri, V. Highly stable Ag–Ni based transparent electrodes on PET substrates for flexible organic solar cells. Sol. Energy Mater. Sol. Cells 2012, 107, 63–68. [Google Scholar] [CrossRef]
- Yambem, S.D.; Haldar, A.; Liao, K.S.; Dillon, E.P.; Barron, A.R.; Curran, S.A. Optimization of organic solar cells with thin film Au as anode. Sol. Energy Mater. Sol. Cells 2011, 95, 2424–2430. [Google Scholar] [CrossRef]
- Wu, J.; Agrawal, M.; Becerril, H.A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes. ACS Nano 2010, 4, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Yeh, T.H.; Lee, C.C.; Shih, C.J.; Kumar, G.; Biring, S.; Liu, S.W. Vacuum-deposited MoO3/Ag/WO3 multilayered electrode for highly efficient transparent and inverted organic light-emitting diodes. Org. Electron. 2018, 59, 266–271. [Google Scholar] [CrossRef]
- Ohsawa, M.; Hashimoto, N. Flexible transparent electrode of gravure offset printed invisible silver-grid laminated with conductive polymer. Mater. Res. Express 2018, 5, 085030. [Google Scholar] [CrossRef]
- Cao, W.; Zheng, Y.; Li, Z.; Wrzesniewski, E.; Hammond, W.T.; Xue, J. Flexible organic solar cells using an oxide/metal/oxide trilayer as transparent electrode. Org. Electron. 2012, 13, 2221–2228. [Google Scholar] [CrossRef]
- Yook, K.S.; Jeon, S.O.; Joo, C.W.; Lee, J.Y. Transparent organic light emitting diodes using a multilayer oxide as a low resistance transparent cathode. Appl. Phys. Lett. 2008, 93, 013301. [Google Scholar] [CrossRef]
- Kang, M.; Kim, M.; Kim, J.; Guo, L.J. Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes. Adv. Mater. 2008, 20, 4408–4413. [Google Scholar] [CrossRef]
- Yu, J.S.; Jung, G.H.; Jo, J.; Kim, J.S.; Kim, J.W.; Kwak, S.W.; Lee, J.L.; Kim, I.; Kim, D. Transparent conductive film with printable embedded patterns for organic solar cells. Sol. Energy Mater. Sol. Cells 2013, 109, 142–147. [Google Scholar] [CrossRef]
- Oke, J.A.; Jen, T.C. Atomic layer deposition and other thin film deposition techniques: From principles to film properties. J. Mater. Res. Technol. 2022, 21, 2481–2514. [Google Scholar] [CrossRef]
- Hasselmann, T.; Misimi, B.; Boysen, N.; Zanders, D.; Wree, J.; Rogalla, D.; Haeger, T.; Zimmermann, F.; Brinkmann, K.O.; Schädler, S.; et al. Silver Thin-Film Electrodes Grown by Low-Temperature Plasma-Enhanced Spatial Atomic Layer Deposition at Atmospheric Pressure. Adv. Mater. Technol. 2023, 8, 2200796. [Google Scholar] [CrossRef]
- Cheylan, S.; Ghosh, D.; Krautz, D.; Chen, T.; Pruneri, V. Organic light-emitting diode with indium-free metallic bilayer as transparent anode. Org. Electron. 2011, 12, 818–822. [Google Scholar] [CrossRef]
- Hirano, T.; Kawamura, M.; Kiba, T.; Abe, Y.; Kim, K.H.; Hamano, T. Influence of aluminum interlayer on optical properties of very thin silver thin film. Surf. Coat. Technol. 2020, 393, 125752. [Google Scholar] [CrossRef]
- Wilken, S.; Hoffmann, T.; von Hauff, E.; Borchert, H.; Parisi, J. ITO-free inverted polymer/fullerene solar cells: Interface effects and comparison of different semi-transparent front contacts. Sol. Energy Mater. Sol. Cells 2012, 96, 141–147. [Google Scholar] [CrossRef]
- Xie, W.; Lau, K.; Lee, C.; Lee, S. Transparent organic light-emitting devices with LiF/Yb:Ag cathode. Thin Solid Film. 2007, 515, 6975–6977. [Google Scholar] [CrossRef]
- Li, D.; Pan, Y.; Liu, H.; Zhang, Y.; Zheng, Z.; Zhang, F. Study on Ultrathin Silver Film Transparent Electrodes Based on Aluminum Seed Layers with Different Structures. Nanomaterials 2022, 12, 3540. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Chen, H.; Li, C.; Huang, W.; Ichikawa, M. High-refractive-index capping layer improves top-light-emitting device performance. Appl. Opt. 2020, 59, 4114. [Google Scholar] [CrossRef] [PubMed]
- Chae, H.; Park, Y.; Jo, Y.; Jeon, Y.; Lee, H.J.; Yoo, S.; Choi, K.C. Blue Transparent OLEDs with High Stability and Transmittance for Modulating Sleep Disorders. Adv. Mater. Interfaces 2023, 10, 2202443. [Google Scholar] [CrossRef]
- Lee, I.; Kim, S.; Park, J.Y.; Kim, S.; Cho, H.W.; Ham, J.; Gim, S.; Kim, K.; Hong, K.; Lee, J.L. Symmetrical Emission Transparent Organic Light-Emitting Diodes with Ultrathin Ag Electrodes. IEEE Photonics J. 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Meiss, J.; Ziehlke, H.; Schubert, S.; Leo, K.; Riede, M. Coevaporated calcium-silver metal alloys as contact for highly transparent organic solar cells. Energy Sci. Eng. 2014, 2, 77–85. [Google Scholar] [CrossRef]
- Ji, C.; Liu, D.; Zhang, C.; Guo, L.J. Ultrathin-metal-film-based transparent electrodes with relative transmittance surpassing 100%. Nat. Commun. 2020, 11, 3367. [Google Scholar] [CrossRef]
- Song, M.G.; Kim, K.S.; Yang, H.I.; Kim, S.K.; Kim, J.H.; Han, C.W.; Choi, H.C.; Pode, R.; Kwon, J.H. Highly reliable and transparent Al doped Ag cathode fabricated using thermal evaporation for transparent OLED applications. Org. Electron. 2020, 76, 105418. [Google Scholar] [CrossRef]
- MacLeod, H.A.; Macleod, H.A. Thin-Film Optical Filters; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- Shinar, J.; Shinar, R. An Overview of Organic Light-Emitting Diodes and their Applications; Elsevier: Amsterdam, The Netherland, 2011; pp. 73–107. [Google Scholar] [CrossRef]
- Tian, B.; Williams, G.; Ban, D.; Aziz, H. Transparent organic light-emitting devices using a MoO3/Ag/MoO3 cathode. J. Appl. Phys. 2011, 110, 104507. [Google Scholar] [CrossRef]
- Cattin, L.; Morsli, M.; Dahou, F.; Abe, S.Y.; Khelil, A.; Bernède, J. Investigation of low resistance transparent MoO3/Ag/MoO3 multilayer and application as anode in organic solar cells. Thin Solid Films 2010, 518, 4560–4563. [Google Scholar] [CrossRef]
- Wrzesniewski, E. Transparent oxide/metal/oxide trilayer electrode for use in top-emitting organic light-emitting diodes. J. Photonics Energy 2011, 1, 011023. [Google Scholar] [CrossRef]
- Choi, D.K.; Kim, D.H.; Lee, C.M.; Hafeez, H.; Sarker, S.; Yang, J.S.; Chae, H.J.; Jeong, G.W.; Choi, D.H.; Kim, T.W.; et al. Highly efficient, heat dissipating, stretchable organic light-emitting diodes based on a MoO3/Au/MoO3 electrode with encapsulation. Nat. Commun. 2021, 12, 2864. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Yun, C.; Park, J.W.; Yoo, S. Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes. Org. Electron. 2009, 10, 1163–1169. [Google Scholar] [CrossRef]
- Han, Y.C.; Lim, M.S.; Park, J.H.; Choi, K.C. ITO-free flexible organic light-emitting diode using ZnS/Ag/MoO3 anode incorporating a quasi-perfect Ag thin film. Org. Electron. 2013, 14, 3437–3443. [Google Scholar] [CrossRef]
- Liu, X. The design of ZnS/Ag/ZnS transparent conductive multilayer films. Thin Solid Films 2003, 441, 200–206. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, P.; Kumar, A.; Surbhi; Asokan, K.; Sachdev, K. High-performance radiation stable ZnO/Ag/ZnO multilayer transparent conductive electrode. Sol. Energy Mater. Sol. Cells 2017, 169, 122–131. [Google Scholar] [CrossRef]
- Hajj, A.E.; Lucas, B.; Chakaroun, M.; Antony, R.; Ratier, B.; Aldissi, M. Optimization of ZnO/Ag/ZnO multilayer electrodes obtained by Ion Beam Sputtering for optoelectronic devices. Thin Solid Film. 2012, 520, 4666–4668. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, J.H.; Kim, S.W.; Yoo, Y.Z.; Seong, T.Y. Highly flexible ZnO/Ag/ZnO conducting electrode for organic photonic devices. Ceram. Int. 2015, 41, 7146–7150. [Google Scholar] [CrossRef]
- Kang, S.K.; Kang, D.Y.; Park, J.W.; Son, K.R.; Kim, T.G. Work function-tunable ZnO/Ag/ZnO film as an effective hole injection electrode prepared via nickel doping for thermally activated delayed fluorescence-based flexible blue organic light-emitting diodes. Appl. Surf. Sci. 2021, 538, 148202. [Google Scholar] [CrossRef]
- Girtan, M. Comparison of ITO/metal/ITO and ZnO/metal/ZnO characteristics as transparent electrodes for third generation solar cells. Sol. Energy Mater. Sol. Cells 2012, 100, 153–161. [Google Scholar] [CrossRef]
- Yu, S.; Li, L.; Lyu, X.; Zhang, W. Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit. Sci. Rep. 2016, 6, 20399. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Lee, S.J.; Lee, J.H.; Kal, J.; Hahn, J.; Kim, H.K. Large area roll-to-roll sputtering of transparent ITO/Ag/ITO cathodes for flexible inverted organic solar cell modules. Org. Electron. 2016, 30, 112–121. [Google Scholar] [CrossRef]
- Lee, D.; Song, M.S.; Seo, Y.H.; Lee, W.W.; Kim, Y.W.; Park, M.; Shin, Y.J.; Kwon, S.J.; Jeon, Y.; Cho, E.S. Highly Transparent Red Organic Light-Emitting Diodes with AZO/Ag/AZO Multilayer Electrode. Micromachines 2024, 15, 146. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wu, D.; Wang, J.; Zhou, Y.; Zhang, Z.; Li, C.; Zhang, J.; Chen, P.; Duan, Y. A highly transparent laminated composite cathode for organic light-emitting diodes. Appl. Phys. Lett. 2021, 119, 073301. [Google Scholar] [CrossRef]
- Park, S.; Lim, J.T.; Jin, W.Y.; Lee, H.; Kwon, B.H.; Cho, N.S.; Han, J.H.; Kang, J.W.; Yoo, S.; Lee, J.I. Efficient Large-Area Transparent OLEDs Based on a Laminated Top Electrode with an Embedded Auxiliary Mesh. ACS Photonics 2017, 4, 1114–1122. [Google Scholar] [CrossRef]
- Bae, H.W.; Kim, S.K.; Lee, S.; Song, M.; Lampande, R.; Kwon, J.H. Thermally Evaporated Organic/Ag/Organic Multilayer Transparent Conducting Electrode for Flexible Organic Light-Emitting Diodes. Adv. Electron. Mater. 2019, 5, 1900620. [Google Scholar] [CrossRef]
- Kim, S.K.; Lampande, R.; Kwon, J.H. Electro-optically Efficient and Thermally Stable Multilayer Semitransparent Pristine Ag Cathode Structure for Top-Emission Organic Light-Emitting Diodes. ACS Photonics 2019, 6, 2957–2965. [Google Scholar] [CrossRef]
- Xu, M.; Jiao, S.; Liu, M.; Liu, Y.; Cao, W.; Wu, Y.C.; Zhou, H. Highly Efficiency Top-Emitting Organic Light-Emitting Diode with Double Capping Layers. In Proceedings of the 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Xi’an, China, 12–14 June 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Joo, C.W.; Shin, J.W.; Moon, J.; Huh, J.W.; Cho, D.H.; Lee, J.; Park, S.K.; Cho, N.S.; Han, J.H.; Chu, H.Y.; et al. Highly efficient white transparent organic light emitting diodes with nano-structured substrate. Org. Electron. 2016, 29, 72–78. [Google Scholar] [CrossRef]
- Mauro, A.D.G.D.; Lepera, E.; Bruno, A.; Fasolino, T.; Maglione, M.; Nenna, G.; Minarini, C. Light extraction in organic light-emitting diode using PDMS/TiO2 scattering substrates. In Proceedings of the 2014 Fotonica AEIT Italian Conference on Photonics Technologies, Naples, Italy, 12–14 May 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Kim, D.Y.; Choi, C.S.; Kim, J.Y.; Kim, D.H.; Choi, K.C. Phosphorescent transparent organic light-emitting diodes with enhanced outcoupling efficiency: Reduction of surface plasmon losses. Org. Electron. 2014, 15, 1222–1228. [Google Scholar] [CrossRef]
- Huh, J.W.; Shin, J.W.; Cho, D.H.; Moon, J.; Joo, C.W.; Park, S.K.; Hwang, J.; Cho, N.S.; Lee, J.; Han, J.H.; et al. A randomly nano-structured scattering layer for transparent organic light emitting diodes. Nanoscale 2014, 6, 10727–10733. [Google Scholar] [CrossRef] [PubMed]
- Ran, G.Z.; Zhao, W.Q.; Ma, G.L.; Dai, L.; Qin, G.G. Role of the dielectric capping layer in enhancement of light outcoupling for semitransparent metal-cathode organic light-emitting devices. J. Opt. A Pure Appl. Opt. 2006, 8, 733–736. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, J.; Chu, H.Y.; Lee, J.I. Controlling the optical efficiency of the transparent organic light-emitting diode using capping layers. J. Inf. Disp. 2013, 14, 57–60. [Google Scholar] [CrossRef]
- Tan, G.; Lee, J.H.; Lin, S.C.; Zhu, R.; Choi, S.H.; Wu, S.T. Analysis and optimization on the angular color shift of RGB OLED displays. Opt. Express 2017, 25, 33629. [Google Scholar] [CrossRef]
- Hong, K.; Lee, J.L. Review paper: Recent developments in light extraction technologies of organic light emitting diodes. Electron. Mater. Lett. 2011, 7, 77–91. [Google Scholar] [CrossRef]
- Park, C.H.; Kim, J.G.; Jung, S.G.; Lee, D.J.; Park, Y.W.; Ju, B.K. Optical characteristics of refractive-index-matching diffusion layer in organic light-emitting diodes. Sci. Rep. 2019, 9, 8690. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.H.; El-Hagary, M.; Emam-Ismail, M. Thickness and annealing effects on the optoelectronic properties of ZnS films. J. Phys. D Appl. Phys. 2010, 43, 075401. [Google Scholar] [CrossRef]
- Subrahmanyam, A.; Karuppasamy, A. Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films. Sol. Energy Mater. Sol. Cells 2007, 91, 266–274. [Google Scholar] [CrossRef]
- Kwon, B.H.; Lee, H.; Kim, M.; Joo, C.W.; Cho, H.; Lim, J.T.; Jung, Y.S. A Systematic Study of the Interactions in the Top Electrode/Capping Layer/Thin Film Encapsulation of Transparent OLEDs. J. Ind. Eng. Chem. 2021, 93, 237–244. [Google Scholar] [CrossRef]
- Haacke, G. New figure of merit for transparent conductors. J. Appl. Phys. 1976, 47, 4086–4089. [Google Scholar] [CrossRef]
- Anand, A.; Islam, M.M.; Meitzner, R.; Schubert, U.S.; Hoppe, H. Introduction of a Novel Figure of Merit for the Assessment of Transparent Conductive Electrodes in Photovoltaics: Exact and Approximate Form. Adv. Energy Mater. 2021, 11, 2100875. [Google Scholar] [CrossRef]
- Ji, W.; Zhao, J.; Sun, Z.; Xie, W. High-color-rendering flexible top-emitting warm-white organic light emitting diode with a transparent multilayer cathode. Org. Electron. 2011, 12, 1137–1141. [Google Scholar] [CrossRef]
- Lu, H.W.; Huang, C.W.; Kao, P.C.; Chu, S.Y. ITO-free organic light-emitting diodes with MoO3/Al/MoO3 as semitransparent anode fabricated using thermal deposition method. Appl. Surf. Sci. 2015, 347, 116–121. [Google Scholar] [CrossRef]
- Ryu, S.Y.; Noh, J.H.; Hwang, B.H.; Kim, C.S.; Jo, S.J.; Kim, J.T.; Hwang, H.S.; Baik, H.K.; Jeong, H.S.; Lee, C.H.; et al. Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode. Appl. Phys. Lett. 2008, 92, 023306. [Google Scholar] [CrossRef]
- Guillén, C.; Herrero, J. ITO/metal/ITO multilayer structures based on Ag and Cu metal films for high-performance transparent electrodes. Sol. Energy Mater. Sol. Cells 2008, 92, 938–941. [Google Scholar] [CrossRef]
- Park, J.W.; Shin, D.C.; Park, S.H. Large-area OLED lightings and their applications. Semicond. Sci. Technol. 2011, 26, 034002. [Google Scholar] [CrossRef]
- Ye, T.; Jun, L.; Kun, L.; Hu, W.; Ping, C.; Duan, Y.-H.; Zheng, C.; Liu, Y.-F.; Wang, H.-R.; Yu, D. Inkjet-printed Ag grid combined with Ag nanowires to form a transparent hybrid electrode for organic electronics. Org. Electron. 2017, 41, 179–185. [Google Scholar] [CrossRef]
- Yu, J.H.; Cho, K.H.; Kang, K.T.; Cho, Y.I.; Lee, C.S.; Lee, S.H. 64-2: Fabrication of Auxiliary Electrodes using Ag Inkjet Printing for OLED Lighting. SID Symp. Dig. Tech. Pap. 2018, 49, 843–846. [Google Scholar] [CrossRef]
- Sim, S.M.; Yu, J.H.; Cho, K.H.; Lee, S.H. Self-aligned bilayer inkjet printing process for reducing shadow area by auxiliary electrodes in OLED lighting. Org. Electron. 2022, 111, 106672. [Google Scholar] [CrossRef]
- Neyts, K.; Marescaux, M.; Nieto, A.U.; Elschner, A.; Lövenich, W.; Fehse, K.; Huang, Q.; Walzer, K.; Leo, K. Inhomogeneous luminance in organic light emitting diodes related to electrode resistivity. J. Appl. Phys. 2006, 100, 114513. [Google Scholar] [CrossRef]
- Neyts, K.; Real, A.; Marescaux, M.; Mladenovski, S.; Beeckman, J. Conductor grid optimization for luminance loss reduction in organic light emitting diodes. J. Appl. Phys. 2008, 103, 093113. [Google Scholar] [CrossRef]
- Ghosh, D.S.; Chen, T.L.; Pruneri, V. High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid. Appl. Phys. Lett. 2010, 96, 041109. [Google Scholar] [CrossRef]
- Burwell, G.; Burridge, N.; Sandberg, O.J.; Bond, E.; Li, W.; Meredith, P.; Armin, A. Metal Grid Structures for Enhancing the Stability and Performance of Solution-Processed Organic Light-Emitting Diodes. Adv. Electron. Mater. 2020, 6, 2000732. [Google Scholar] [CrossRef]
- Fakharan, Z.; Dabirian, A. Metal grid technologies for flexible transparent conductors in large-area optoelectronics. Curr. Appl. Phys. 2021, 31, 105–121. [Google Scholar] [CrossRef]
- Morales-Masis, M.; Dauzou, F.; Jeangros, Q.; Dabirian, A.; Lifka, H.; Gierth, R.; Ruske, M.; Moet, D.; Hessler-Wyser, A.; Ballif, C. An Indium-Free Anode for Large-Area Flexible OLEDs: Defect-Free Transparent Conductive Zinc Tin Oxide. Adv. Funct. Mater. 2016, 26, 384–392. [Google Scholar] [CrossRef]
- Uhrich, C.; Weiß, A.; Pfeiffer, M. Roll-to-roll production of organic solar cells. In Proceedings of the Organic, Hybrid, and Perovskite Photovoltaics XVIII, San Diego, CA, USA, 6–10 August 2017; Kafafi, Z.H., Lane, P.A., Lee, K., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2017; Volume 10363, p. 103630F. [Google Scholar] [CrossRef]
- Seetharaman, M.; Pillai, G.; Rana, R.; Awasthi, A.; Krishnamanohara; Balakrishnan, M.; Katiyar, M. Challenges and Approaches towards Defect Free Large Area Organic Light Emitting Diode Fabrication. In Proceedings of the 2022 IEEE International Conference on Emerging Electronics (ICEE), Bangalore, India, 11–14 December 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Ding, Z.; Kim, H.; Lee, D.; Stickel, S.; Boroson, M.; Hamer, J.; Giebink, N.C. The nature of catastrophic OLED lighting panel failure. J. Appl. Phys. 2019, 125, 055501. [Google Scholar] [CrossRef]
- Solanki, A.; Awasthi, A.; Unni, K.N.N.; Deepak. An efficient and facile method to develop defect-free OLED displays. Semicond. Sci. Technol. 2021, 36, 065005. [Google Scholar] [CrossRef]
- Riahi, M.; Yoshida, K.; Hafeez, H.; Samuel, I.D.W. Improving the Uniformity of Top Emitting Organic Light Emitting Diodes Using a Hybrid Electrode Structure. Adv. Electron. Mater. 2024, 10, 2300675. [Google Scholar] [CrossRef]
OLED | LED | Fluorescent Lamp | Incandescent Lamp | |
---|---|---|---|---|
Luminous Efficacy [lm/W] | 50–100 | 60–160 | 60–80 | 15–20 |
Lifetime [h] | 5000–10,000 | 50,000–100,000 | 7000–15,000 | 700–2000 |
Material | Refractive Index at 550 nm | Ref. |
---|---|---|
ITO | 1.9 | [191] |
ZnO | 2.0 | [192] |
ZnS | 2.3 | [193] |
ZnSe | 2.5 | [189] |
TiO2 | 2.3 | [189] |
MoO3 | 2.16 | [181] |
WoO3 | 2.1 | [194] |
Al2O3 | 1.6 | [192] |
Alq3 | 1.75 | [195] |
p-bPPhenB | 2.2 | [181] |
NPB | 1.8 | [195] |
TPD | 1.9 | [156] |
HATCN | 1.82 | [195] |
Electrode Structure | Layer Thickness [nm] | Substrate Type | Transmittance [T, %] | Sheet Resistance [Rs, Ω/□] | Haacke’s FOM at 550 nm 1 [ϕH, Ω−1] | Ref. |
---|---|---|---|---|---|---|
MoO3/Ag/MoO3 | 40/12/40 | PET | 67.2 | 13.1 | [181] | |
MoO3/Ag/MoO3 | 30/11/30 | Glass | 87.2 | 4.54 | [198] | |
MoO3/Ag/WO3 | 5/12/40 | - | 88 | 4.2 | [143] | |
MoO3/Al/WO3 | 30/15/5 | Glass | 70 | 7 | [199] | |
MoO3/Au/MoO3 | 5/10/40 | Glass | 82.4 | 10 | [166] | |
ZnS/Ag/MoO3 | 25/7/5 | Glass | 83 | 9.6 | [169] | |
ZnO/Ag/ZnO | 40/18.8/40 | Glass | 96 | 4.4 | [173] | |
ZnO/Ag/ZnO | - | PET | 95.2 | 10.3 | [174] | |
WO3/Ag/WO3 | 40/12/40 | - | 90 | 6 | [200] | |
ITO/Ag/WO3 | 40/12/40 | - | 40 | 6 | [200] | |
ITO/Au/ITO | 20/8/20 | PET | 88 | 16.7 | [201] | |
ITO/Ag/ITO | 40/12/40 | - | 27 | 6 | [200] | |
FTO/Ag/FTO | 20/7/30 | Glass | 96.1 | - | [176] | |
SiO2/Ag/SiO2 | 40/12/40 | - | 68 | 6 | [200] |
Hexagon Side Length [mm] | Average Sheet Resistance [Ω/□] | Transmittance at 550 nm [%] |
---|---|---|
1 | 79 | |
2 | 84 | |
4 | 87 | |
8 | 89 |
Hexagon Side Length [mm] | Average Sheet Resistance [Ω/□] | Transmittance at 550 nm [%] |
---|---|---|
1 | 78 | |
2 | 84 | |
4 | 87 | |
8 | 89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liguori, R.; Nunziata, F.; Aprano, S.; Maglione, M.G. Overcoming Challenges in OLED Technology for Lighting Solutions. Electronics 2024, 13, 1299. https://doi.org/10.3390/electronics13071299
Liguori R, Nunziata F, Aprano S, Maglione MG. Overcoming Challenges in OLED Technology for Lighting Solutions. Electronics. 2024; 13(7):1299. https://doi.org/10.3390/electronics13071299
Chicago/Turabian StyleLiguori, Rosalba, Fiorita Nunziata, Salvatore Aprano, and Maria Grazia Maglione. 2024. "Overcoming Challenges in OLED Technology for Lighting Solutions" Electronics 13, no. 7: 1299. https://doi.org/10.3390/electronics13071299
APA StyleLiguori, R., Nunziata, F., Aprano, S., & Maglione, M. G. (2024). Overcoming Challenges in OLED Technology for Lighting Solutions. Electronics, 13(7), 1299. https://doi.org/10.3390/electronics13071299