Classification of Microscopic Hyperspectral Images of Blood Cells Based on Lightweight Convolutional Neural Network
Abstract
:1. Introduction
- (1)
- A lightweight GhostMRNet model is proposed in this study. The model was tested on a real dataset of blood cell microscopic hyperspectral images, achieving an overall classification accuracy, average classification accuracy, and Kappa coefficient of 99.965%, 99.565%, and 0.9925%, respectively. These results substantiate the effectiveness of our proposed approach, underscoring its research value and practical significance in assisting medical professionals in disease diagnosis.
- (2)
- To simultaneously achieve a lightweight design and enhance network feature extraction capability, the GhoMR block was introduced. A Ghost Module replaces conventional convolutional layers, effectively reducing the network’s computational complexity. Multiscale feature extraction is realized through the cascading of convolutional kernels, enhancing network feature extraction capabilities. Additionally, to further augment the feature representation capability and reduce redundant information, the SE module was incorporated to allocate weights to features in each channel, facilitating the fusion of inter-channel features.
- (3)
- To address the issue of imbalanced sample classes, focal loss is employed. By adjusting the weights of the loss function, focal loss focuses on challenging-to-classify samples, contributing to a balanced emphasis on different categories. This enhances the classification accuracy, particularly for rare categories, and mitigates the impact of class imbalance on model training.
2. Related Work
2.1. Ghost Module
2.2. SE Block
3. Proposed Method
3.1. GhostMRNet
3.2. GhoMR
- (1)
- The extraction of feature is performed using a Ghost Module with a 1 × 1 kernel:
- (2)
- The Spit operation is employed to partition the N feature maps of into four subsets, denoted by , where . Each subset, excluding , is required to undergo processing through a 3 × 3 Ghost Module. The output, , of the preceding Ghost Module undergoes hierarchical fusion through summation with the elements of the current subset, , resulting in the generation of the feature set :
- (3)
- Ultimately, the output mappings , , , and are concatenated along their depth, creating a unified feature block encompassing all information. This consolidated feature block undergoes feature recalibration through a 1 × 1 Ghost Module and an SE block. Subsequently, it is fused with the input through a residual link to generate the final output . This operation is denoted as follows:
3.3. Focal Loss
4. Experiments and Discussion
4.1. Dataset Preprocessing
4.2. Experiment Setting
4.3. Classification Results of GhostMRNet
4.4. Experimental Parameters
4.4.1. Effect of Window Size
4.4.2. Effect of the Number of Principal Components
4.4.3. Effect of Training Ratio
4.5. Ablation Experiments
4.6. Comparison Results of Different Methods
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saleem, S.; Amin, J.; Sharif, M.; Mallah, G.A.; Kadry, S.; Gandomi, A.H. Leukemia segmentation and classification: A comprehensive survey. Comput. Biol. Med. 2022, 150, 106028. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Shi, Y.; Chin, L.K.; Hutchinson, P.E.; Zhang, Y.; Chierchia, G.; Talbot, H.; Jiang, X.; Bourouina, T.; Liu, A.Q. Machine-Learning-Assisted Intelligent Imaging Flow Cytometry: A Review. Adv. Intell. Syst. 2021, 3, 2100073. [Google Scholar] [CrossRef]
- Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in Spectral-Spatial Classification of Hyperspectral Images. Proc. IEEE 2013, 101, 652–675. [Google Scholar] [CrossRef]
- Landgrebe, D. Hyperspectral image data analysis. IEEE Signal Process. Mag. 2002, 19, 17–28. [Google Scholar] [CrossRef]
- Calin, M.A.; Parasca, S.V.; Savastr, D.; Manea, D. Hyperspectral imaging in the medical field: Present and future. Appl. Spectrosc. Rev. 2014, 49, 435–447. [Google Scholar] [CrossRef]
- Lu, G.; Fei, B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19, 10901. [Google Scholar] [CrossRef] [PubMed]
- Panasyuk, S.V.; Yang, S.; Faller, D.V.; Ngo, D.; Lew, A.R.; Freeman, J.E.; Rogers, A.E. Medical hyperspectral imaging to facilitate residual tumor identification during surgery. Cancer Biol. Ther. 2007, 6, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Peyret, R.; Bouridane, R.; Khelifi, F.; Tahir, M.A.; Al-Maadeed, S. Automatic classification of colorectal and prostatic histologic tumor images using multiscale multispectral local binary pattern texture features and stacked generalization. Neurocomputing 2018, 275, 83–93. [Google Scholar] [CrossRef]
- Nakaya, D.; Tomiyama, Y.; Satori, S.; Saegusa, M.; Yoshida, T.; Yokoi, A.; Kano, M. Development of high-performance pathological diagnosis software using a hyperspectral camera. In Proceedings of the 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Sarawak, Malaysia, 3–6 December 2018; pp. 217–220. [Google Scholar]
- Martin, M.E.; Wabuyele, M.B.; Chen, K.; Kasili, P.; Panjehpour, M.; Phan, M.; Overholt, B.; Cunningham, G.; Wilson, D.; DeNovo, R.C.; et al. Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection. Ann. Biomed. Eng. 2006, 34, 1061–1068. [Google Scholar] [CrossRef]
- Khouj, Y.; Dawson, J.; Coad, J.; Vona-Davis, L. Hyperspectral imaging and K-means classification for histologic evaluation of ductal carcinoma in situ. Front. Oncol. 2018, 8, 17. [Google Scholar] [CrossRef]
- Irshad, H.; Gouaillard, A.; Roux, L.; Racoceanu, D. Multispectral band selection and spatial characterization: Application to mitosis detection in breast cancer histopathology. Comput. Med. Imaging Graph. 2014, 38, 390–402. [Google Scholar] [CrossRef] [PubMed]
- Bautista, P.A.; Hashimoto, N.; Yagi, Y. Color standardization in whole slide imaging using a color calibration slide. J. Pathol. Inform. 2014, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, M.; Qiu, S.; Sun, L.; Liu, H.; Li, Q.; Wang, Y. Adaptive and automatic red blood cell counting method based on microscopic hyperspectral imaging technology. J. Opt. 2017, 19, 124014. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, J.; Hu, M.; Zhou, M.; Li, Q.; Sun, L.; Qiu, S.; Wang, Y. Leukocyte classification based on spatial and spectral features of microscopic hyperspectral images. Opt. Laser Technol. 2019, 112, 530–538. [Google Scholar] [CrossRef]
- Li, Q.; Xu, D.; He, X.; Wang, Y.; Chen, Z.; Liu, H.; Xu, Q.; Guo, F. AOTF based molecular hyperspectral imaging system and its applications on nerve morphometry. Appl. Opt. 2013, 52, 3891–3901. [Google Scholar] [CrossRef] [PubMed]
- More, S.S.; Vince, R. Hyperspectral imaging signatures detect amyloidopathy in Alzheimer’s mouse retina well before onset of cognitive decline. ACS Chem. Neurosci. 2015, 6, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xue, Y.; Zhang, J.; Xiao, G. Microscopic hyperspectral imaging studies of normal and diabetic retina of rats. Sci. China Ser. C Life Sci. 2008, 51, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Shelhamer, E.; Long, J.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; Volume 39, pp. 640–651. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation; Springer International Publishing: Cham, Swizerland, 2015; pp. 234–241. [Google Scholar]
- Raj, R.J.S.; Shobana, S.J.; Pustokhina, I.V.; Pustokhin, D.A.; Gupta, D.; Shankar, K. Optimal Feature Selection-Based Medical Image Classification Using Deep Learning Model in Internet of Medical Things. IEEE Access 2020, 8, 58006–58017. [Google Scholar] [CrossRef]
- Balachandar, N.; Chang, K.; Kalpathy-Cramer, J.; Rubin, D.L. Accounting for data variability in multi-institutional distributed deep learning for medical imaging. J. Am. Med. Inform. Assoc. JAMIA 2020, 27, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Li, W.; Li, Q. Guided filter-based medical hyperspectral image restoration and cell classification. J. Med. Imaging Health Inform. 2018, 8, 825–834. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Xu, X.; Hu, W. Cell classification using convolutional neural networks in medical hyperspectral imagery. In Proceedings of the 2017 2nd International Conference on Image, Vision and Computing (ICIVC), Chengdu, China, 2–4 June 2017; pp. 501–504. [Google Scholar] [CrossRef]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More Features From Cheap Operations. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1577–1586. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2011–2023. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
Bloodcell1-3 | Bloodcell2-2 | |||
---|---|---|---|---|
Class | Quantity | Proportion | Quantity | Proportion |
Red cells | 519,378 | 66.74% | 147,482 | 70.78% |
White cells | 9010 | 1.16% | 4446 | 2.13% |
Background | 249,838 | 32.10% | 56,434 | 27.09% |
Total | 778,226 | 208,362 |
Dataset | Class | Precision (%) | Recall (%) | F1-Score (%) | OA (%) | AA (%) | Kappa (%) |
---|---|---|---|---|---|---|---|
1-3 | RBC | 99.98 | 99.99 | 99.98 | 99.97 ± 0.0078 | 99.47 ± 0.0195 | 99.23 ± 0.0237 |
WBC | 99.41 ± 0.0008 | 98.15 ± 0.0056 | 99.18 ± 0.0031 | ||||
2-2 | RBC | 99.98 | 99.98 | 99.98 | 99.96 ± 0.0064 | 99.66 ± 0.1392 | 99.31 ± 0.1161 |
WBC | 99.30 ± 0.0007 | 99.30 ± 0.0027 | 99.32 ± 0.0011 |
Model | Ghost Module | SE Block | GhoMR | OA (%) | AA (%) | Kappa (%) | Parameters |
---|---|---|---|---|---|---|---|
1 | √ | √ | 99.98 ± 0.0542 | 99.78 ± 0.0018 | 99.44 ± 0.1494 | 14,906 | |
2 | √ | √ | 99.71 ± 0.0349 | 93.62 ± 1.4775 | 91.09 ± 1.2009 | 10,812 | |
3 | √ | √ | √ | 99.97 ± 0.0078 | 99.47 ± 0.0195 | 99.23 ± 0.0237 | 11,324 |
4 | 99.95 ± 0.0049 | 98.83 ± 0.1598 | 98.48 ± 0.1494 | 8634 |
Model | Ghost Module | SE Block | GhoMR | OA (%) | AA (%) | Kappa (%) | Parameters |
---|---|---|---|---|---|---|---|
1 | √ | √ | 99.96 ± 0.0050 | 99.78 ± 0.0310 | 99.28 ± 0.0876 | 14,906 | |
2 | √ | √ | 99.01 ± 0.1862 | 86.77 ± 4.9514 | 80.50 ± 5.2525 | 10,812 | |
3 | √ | √ | √ | 99.96 ± 0.0064 | 99.66 ± 0.1392 | 99.31 ± 0.1161 | 11,324 |
4 | 99.94 ± 0.0041 | 99.12 ± 0.0696 | 98.72 ± 0.0726 | 8634 |
Model | Class | Precision (%) | Recall (%) | F1-Score (%) | OA (%) | AA% | Kappa |
---|---|---|---|---|---|---|---|
GhostMRNet | RBC | 99.98 | 99.99 | 99.98 | 99.97 ± 0.0078 | 99.47 ± 0.0195 | 99.23 ± 0.0237 |
WBC | 99.41 ± 0.0008 | 98.15 ± 0.0056 | 99.18 ± 0.0031 | ||||
GhostNet | RBC | 99.78 ± 0.0005 | 99.93 ± 0.0003 | 99.86 ± 0.0001 | 99.71 ± 0.0349 | 93.62 ± 14,775 | 91.09 ± 1.2009 |
WBC | 95.66 ± 0.0194 | 87.31 ± 0.0298 | 91.24 ± 0.0118 | ||||
ResNet | RBC | 99.98 | 99.99 | 99.98 | 99.96 ± 0.0040 | 99.29 ± 0.1084 | 98.94 ± 0.1208 |
WBC | 99.33 ± 0.0004 | 98.61 ± 0.0021 | 98.97 ± 0.0011 | ||||
CNN | RBC | 99.93 | 99.965 | 99.95 | 99.89 ± 0.0124 | 97.86 ± 0.3294 | 96.76 ± 0.3828 |
WBC | 97.91 ± 0.0028 | 95.76 ± 0.0021 | 96.82 ± 0.0037 | ||||
SVM | RBC | 99.91 ± 0.0034 | 99.96 ± 0.0007 | 99.94 ± 0.0020 | 98.39 ± 0.3443 | 62.58 ± 2.2792 | 24.67 ± 1.6997 |
WBC | 61.35 ± 0.0562 | 16.22 ± 0.2912 | 25.83 ± 0.2835 |
Model | Class | Precision (%) | Recall (%) | F1-Score (%) | OA (%) | AA% | Kappa |
---|---|---|---|---|---|---|---|
GhostMRNet | RBC | 99.98 | 99.98 | 99.98 | 99.96 ± 0.0064 | 99.66 ± 0.1392 | 99.31 ± 0.1161 |
WBC | 99.30 ± 0.0007 | 99.30 ± 0.0027 | 99.32 ± 0.0011 | ||||
GhostNet | RBC | 99.22 ± 0.0029 | 99.77 ± 0.0012 | 99.49 ± 0.0009 | 99.01 ± 0.1862 | 86.77 ± 4.9514 | 80.50 ± 5.2525 |
WBC | 91.34 ± 0.0363 | 73.76 ± 0.1001 | 80.99 ± 0.0517 | ||||
ResNet | RBC | 99.96 | 99.97 | 99.96 | 99.93 ± 0.0063 | 99.29 ± 0.0681 | 98.72 ± 0.1097 |
WBC | 98.90 ± 0.0027 | 98.63 ± 0.0014 | 98.76 ± 0.0011 | ||||
CNN | RBC | 99.62 ± 0.0003 | 99.89 ± 0.0002 | 99.75 ± 0.0002 | 99.52 ± 0.0473 | 93.52 ± 0.5507 | 91.11 ± 0.8877 |
WBC | 95.99 ± 0.0083 | 87.15 ± 0.0108 | 91.35 ± 0.0086 | ||||
SVM | RBC | 98.42 ± 0.0041 | 99.93 ± 0.0005 | 99.91 ± 0.0019 | 97.81 ± 0.6341 | 76.54 ± 4.7007 | 52.66 ± 4.7061 |
WBC | 70.02 ± 0.1129 | 43.85 ± 0.1531 | 54.06 ± 0.1424 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, J. Classification of Microscopic Hyperspectral Images of Blood Cells Based on Lightweight Convolutional Neural Network. Electronics 2024, 13, 1578. https://doi.org/10.3390/electronics13081578
Fang J. Classification of Microscopic Hyperspectral Images of Blood Cells Based on Lightweight Convolutional Neural Network. Electronics. 2024; 13(8):1578. https://doi.org/10.3390/electronics13081578
Chicago/Turabian StyleFang, Jinghui. 2024. "Classification of Microscopic Hyperspectral Images of Blood Cells Based on Lightweight Convolutional Neural Network" Electronics 13, no. 8: 1578. https://doi.org/10.3390/electronics13081578
APA StyleFang, J. (2024). Classification of Microscopic Hyperspectral Images of Blood Cells Based on Lightweight Convolutional Neural Network. Electronics, 13(8), 1578. https://doi.org/10.3390/electronics13081578