Explainable Artificial Intelligence Approach for Diagnosing Faults in an Induction Furnace
Abstract
:1. Introduction
2. Related Works
3. Problem Statement
- -
- Prevents further damage to components, especially power semiconductors.
- -
- Reduces repair time and overall downtime.
- -
- Reduces the repair cost.
- -
- Enhances furnace system health and performance.
- -
- Boosts productivity.
- -
- Mitigates potential safety hazards.
4. Proposed Approach
- -
- It perturbs the desired prediction to create replicated feature data that has slight value modifications.
- -
- It calculates the distance between each perturbed data point and the original sample.
- -
- It obtains the outcomes of perturbed data using our black box model.
- -
- It selects features that have the most contribution to the model outcome.
- -
- It approximates a linear model using the perturbed data and selected features.
- -
- An explanation is created based on the feature weights of the approximated linear model.
5. Experimental Results and Discussion
5.1. Outlier Detection
5.2. Model Evaluation
6. Explanation for Predictions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AHU | air handling unit |
AI | artificial intelligence |
ANN | artificial neural network |
ARL | association rule learning |
BN | Bayesian network |
CBR | case-based reasoning |
CFS | correlation-based feature selection |
CNN | convolutional neural network |
COS | changeover switch |
CWConv | continuous wavelet convolutional |
DCNN | deep convolutional neural network |
DIFFI | depth-based isolation forest feature importance |
DNN | deep neural network |
DT | decision tree |
EHD | even harmonic distortion |
FG-CAM | frequency-domain-based gradient-weighted class activation map |
FLS | fuzzy logic system |
GLD | ground leak detector |
IF | induction furnace |
KNN | K-nearest neighbor |
LGB | light gradient boosting |
LIME | local interpretable model-agnostic explanations |
LOF | local outlier factor |
LR | linear regression |
LRP | layer-wise relevance propagation |
LSTM | long short-term memory |
MLP | multilayer perceptron |
NB | naïve Bayes |
OHD | Odd harmonic distortion |
PCC | Pearson correlation coefficient |
RF | Random forest |
RMSE | Root-mean-square error |
RNN | Recurrent neural network |
RUL | Remaining useful life |
SHAP | Shapley additive explanations |
SCR | Silicon-controlled rectifier |
SVM | Support vector machine |
THD | Total harmonic distortion |
XAI | explainable artificial intelligence |
XGB | extreme gradient boosting |
References
- Tan, A.; Bayindir, K. Modeling and analysis of power quality problems caused by coreless induction melting furnace connected to distribution network. Electr. Eng. 2013, 96, 1–15. [Google Scholar] [CrossRef]
- Barik, A.; Good Maintenance Practice and Maintenance Hazards in a Foundry-Some Observations. December 2009. Available online: https://www.researchgate.net/publication/322100996 (accessed on 24 April 2024).
- Razavi-Far, R.; Kinnaert, M. Incremental Design of a Decision System for Residual Evaluation: A Wind Turbine Application. IFAC Proc. Vol. 2012, 45, 343–348. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, S.; Yang, Z.; He, Y. A multi-fault diagnosis method for lithium-ion battery pack using curvilinear Manhattan distance evaluation and voltage difference analysis. J. Energy Storage 2023, 67, 107575. [Google Scholar] [CrossRef]
- He, Z.; Zeng, Y.; Shao, H.; Hu, H.; Xu, X. Novel motor fault detection scheme based on one-class tensor hyperdisk. Knowl.-Based Syst. 2023, 262, 110259. [Google Scholar] [CrossRef]
- Farajzadeh-Zanjani, M.; Hallaji, E.; Razavi-Far, R.; Saif, M. Generative adversarial dimensionality reduction for diagnosing faults and attacks in cyber-physical systems. Neurocomputing 2021, 440, 101–110. [Google Scholar] [CrossRef]
- Farajzadeh-Zanjani, M.; Razavi-Far, R.; Saif, M. A Critical Study on the Importance of Feature Extraction and Selection for Diagnosing Bearing Defects. In Proceedings of the IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), Windsor, ON, Canada, 5–8 August 2018; pp. 803–808. [Google Scholar] [CrossRef]
- Farajzadeh-Zanjani, M.; Hallaji, E.; Razavi-Far, R.; Saif, M. Generative-Adversarial Class-Imbalance Learning for Classifying Cyber-Attacks and Faults—A Cyber-Physical Power System. IEEE Trans. Dependable Secur. Comput. 2022, 19, 4068–4081. [Google Scholar] [CrossRef]
- Li, Y.F.; Liu, J. A Bayesian Network Approach for Imbalanced Fault Detection in High Speed Rail Systems. In Proceedings of the 2018 IEEE International Conference on Prognostics and Health Management (ICPHM), Seattle, WA, USA, 11–13 June 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Upasane, S.J.; Hagras, H.; Anisi, M.H.; Savill, S.; Taylor, I.; Manousakis, K. A Big Bang-Big Crunch Type-2 Fuzzy Logic System for Explainable Predictive Maintenance. In Proceedings of the 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Luxembourg, 11–14 July 2021; pp. 1–8. [Google Scholar] [CrossRef]
- Hasan, M.J.; Sohaib, M.; Kim, J.M. An Explainable AI-Based Fault Diagnosis Model for Bearings. Sensors 2021, 21, 4070. [Google Scholar] [CrossRef] [PubMed]
- Brito, L.C.; Susto, G.A.; Brito, J.N.; Duarte, M.A. An explainable artificial intelligence approach for unsupervised fault detection and diagnosis in rotating machinery. Mech. Syst. Signal Process. 2022, 163, 108105. [Google Scholar] [CrossRef]
- Kim, M.S.; Yun, J.P.; Park, P. An Explainable Convolutional Neural Network for Fault Diagnosis in Linear Motion Guide. IEEE Trans. Ind. Inform. 2021, 17, 4036–4045. [Google Scholar] [CrossRef]
- Kim, M.S.; Yun, J.P.; Park, P. An Explainable Neural Network for Fault Diagnosis With a Frequency Activation Map. IEEE Access 2021, 9, 98962–98972. [Google Scholar] [CrossRef]
- Saeki, M.; Ogata, J.; Murakawa, M.; Ogawa, T. Visual explanation of neural network based rotation machinery anomaly detection system. In Proceedings of the 2019 IEEE International Conference on Prognostics and Health Management (ICPHM), San Francisco, CA, USA, 17–20 June 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Chen, H.Y.; Lee, C.H. Vibration Signals Analysis by Explainable Artificial Intelligence (XAI) Approach: Application on Bearing Faults Diagnosis. IEEE Access 2020, 8, 134246–134256. [Google Scholar] [CrossRef]
- Nor, A.K.M.; Pedapati, S.R.; Muhammad, M. Application of Explainable AI (Xai) For Anomaly Detection and Prognostic of Gas Turbines with Uncertainty Quantification. Preprints 2021, 2021090034. [Google Scholar] [CrossRef]
- Madhikermi, M.; Malhi, A.K.; Främling, K. Explainable Artificial Intelligence Based Heat Recycler Fault Detection in Air Handling Unit. In Explainable, Transparent Autonomous Agents and Multi-Agent Systems; Calvaresi, D., Najjar, A., Schumacher, M., Främling, K., Eds.; Springer: Cham, Switzerland, 2019; pp. 110–125. [Google Scholar]
- Grezmak, J.; Wang, P.; Sun, C.; Gao, R.X. Explainable Convolutional Neural Network for Gearbox Fault Diagnosis. Procedia CIRP 2019, 80, 476–481. [Google Scholar] [CrossRef]
- Grezmak, J.; Zhang, J.; Wang, P.; Loparo, K.A.; Gao, R.X. Interpretable Convolutional Neural Network Through Layer-wise Relevance Propagation for Machine Fault Diagnosis. IEEE Sens. J. 2020, 20, 3172–3181. [Google Scholar] [CrossRef]
- Amarasinghe, K.; Kenney, K.; Manic, M. Toward Explainable Deep Neural Network Based Anomaly Detection. In Proceedings of the 2018 11th International Conference on Human System Interaction (HSI), Gdansk, Poland, 4–6 July 2018; pp. 311–317. [Google Scholar] [CrossRef]
- Keleko, A.T.; Kamsu-Foguem, B.; Ngouna, R.H.; Tongne, A. Health condition monitoring of a complex hydraulic system using Deep Neural Network and DeepSHAP explainable XAI. Adv. Eng. Softw. 2023, 175, 103339. [Google Scholar] [CrossRef]
- Srinivasan, S.; Arjunan, P.; Jin, B.; Sangiovanni-Vincentelli, A.L.; Sultan, Z.; Poolla, K. Explainable AI for Chiller Fault-Detection Systems: Gaining Human Trust. Computer 2021, 54, 60–68. [Google Scholar] [CrossRef]
- Protopapadakis, G.; Apostolidis, A.; Kalfas, A.I. Explainable and Interpretable AI-Assisted Remaining Useful Life Estimation for Aeroengines; Volume 2: Coal, Biomass, Hydrogen, and Alternative Fuels; Controls, Diagnostics, and Instrumentation; Steam Turbine. In Proceedings of the Turbo Expo: Power for Land, Sea, and Air 2022, Rotterdam, The Netherlands, 13–17 June 2022. [Google Scholar] [CrossRef]
- Hong, C.W.; Lee, C.; Lee, K.; Ko, M.S.; Hur, K. Explainable Artificial Intelligence for the Remaining Useful Life Prognosis of the Turbofan Engines. In Proceedings of the 2020 3rd IEEE International Conference on Knowledge Innovation and Invention (ICKII), Kaohsiung, Taiwan, 21–23 August 2020; pp. 144–147. [Google Scholar] [CrossRef]
- Abid, F.B.; Sallem, M.; Braham, A. Robust Interpretable Deep Learning for Intelligent Fault Diagnosis of Induction Motors. IEEE Trans. Instrum. Meas. 2020, 69, 3506–3515. [Google Scholar] [CrossRef]
- Li, T.; Zhao, Z.; Sun, C.; Cheng, L.; Chen, X.; Yan, R.; Gao, R.X. WaveletKernelNet: An Interpretable Deep Neural Network for Industrial Intelligent Diagnosis. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 2302–2312. [Google Scholar] [CrossRef]
- Choi, Y.; Kwun, H.; Kim, D.; Lee, E.; Bae, H. Method of Predictive Maintenance for Induction Furnace Based on Neural Network. In Proceedings of the 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), Busan, Republic of Korea, 19–22 February 2020; pp. 609–612. [Google Scholar] [CrossRef]
- Choi, Y.; Kwun, H.; Kim, D.; Lee, E.; Bae, H. Residual Life Prediction for Induction Furnace by Sequential Encoder with s-Convolutional LSTM. Processes 2021, 9, 1121. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. arXiv 2016, arXiv:1602.04938. [Google Scholar]
- Lundberg, S.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar]
Specification | Value |
---|---|
Rated Power | 5000 KW |
Input Voltage | 550–690 V |
Output Frequency | 200–400 Hz |
Output Voltage | 3–4 Kv |
Fault Types | Label | #Fault Cases | Total Samples | #Outlier Detected |
---|---|---|---|---|
Capacitor | 1 | 37 | 487 | 108 |
Control System | 2 | 24 | 333 | 82 |
Change Over Switch (COS) | 3 | 13 | 181 | 19 |
Earth Fault | 4 | 88 | 1071 | 302 |
Flywheel Diode | 5 | 6 | 67 | 9 |
di/dt Reactor | 6 | 7 | 55 | 23 |
Thyristor (SCR) | 7 | 29 | 370 | 116 |
Temperature | 8 | 86 | 1007 | 192 |
Classifier | Precision | Accuracy | Recall | F-Measure |
---|---|---|---|---|
DNN | 0.9127 | 0.9142 | 0.9287 | 0.9187 |
MLP | 0.9025 | 0.8859 | 0.9007 | 0.8989 |
XGB | 0.8894 | 0.8990 | 0.9188 | 0.8992 |
LGB | 0.8914 | 0.8982 | 0.9175 | 0.8998 |
RF | 0.8880 | 0.8972 | 0.9177 | 0.8960 |
KNN | 0.8778 | 0.8834 | 0.9021 | 0.8874 |
SVM | 0.8144 | 0.8573 | 0.8801 | 0.8274 |
DT | 0.8746 | 0.8514 | 0.8697 | 0.8715 |
LR | 0.8376 | 0.8647 | 0.8857 | 0.8557 |
NB | 0.8736 | 0.7237 | 0.7440 | 0.7973 |
DNN | XGB | KNN | SVM | DT | NB | LR | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p = 0.81 | p = 0.96 | p = 1.00 | p = 0.56 | p = 0.92 | p = 1.00 | p = 0.55 | |||||||
SHAP | LIME | SHAP | LIME | SHAP | LIME | SHAP | LIME | SHAP | LIME | SHAP | LIME | SHAP | LIME |
I2 | I1 | Freq | P2 | AvrI2 | V1H18 | V3H3 | I2 | P2 | S3 | V1H14 | V1H20 | Q2 | Q2 |
MaxI2 | I2 | P2 | S2 | AvrI3 | I2H22 | P2 | P2 | AvrI1 | P2 | V1H12 | V3H13 | QT | V3H13 |
P2 | PT | PF1 | UnbV | V3H13 | V3H13 | Q2 | V3H17 | UnbV | MinI2 | V2H12 | I1H13 | I1H13 | QT |
AvrI3 | V3H13 | V3H21 | V3H13 | AvrI1 | ST | S2 | S2 | I1H11 | V3H13 | P2 | I3H5 | V3H13 | V3H21 |
PT | P2 | CosPhi2 | V1H18 | P2 | AvrI1 | I1H13 | V3H21 | I2H8 | I2H4 | I3 | P2 | I2 | P3 |
I3 | MaxI2 | UnbI | I2H8 | I1 | MinV3 | IT | Q2 | CosPhi3 | I2H16 | V2H14 | PT | V1H7 | I2 |
V3H13 | CosPhi3 | S2 | I2H21 | MaxI3 | AvrI2 | Freq | I1 | I2H5 | V2H20 | P1 | V3H21 | Freq | Freq |
THDV1 | S1 | UnbV | V1H15 | MaxI2 | AvrI3 | I2 | PT | Freq | Q3 | AvrV2 | ST | I2H19 | V1H12 |
VL23 | V3H21 | V3H4 | V2H12 | Q2 | MinI2 | I3 | ST | S3 | MinV2 | S2 | V1H2 | V2H13 | AvrI1 |
ST | V3H17 | AvrI1 | V2H8 | PT | P1 | I2H15 | S1 | I2H11 | KFactorI1 | I3H15 | KFactorI3 | S2 | I1H13 |
MinI2 | ST | V1H14 | I2H6 | I3 | I1H14 | V3H13 | V2H13 | PFT | I2H19 | IT | I3H20 | I2H15 | I3H6 |
CosPhiT | V2 | CosPhi3 | THDI3 | ST | I3H20 | V2H13 | OHDV3 | CosPhiT | AvrI3 | MinI1 | I3H9 | I3 | I2H2 |
S1 | MinV2 | I2H15 | IT | MinI3 | OHDI3 | I1 | I3 | V3H19 | OHDV1 | UnbV | V1H6 | MaxI1 | V1H7 |
V1H12 | THDV1 | I2H16 | I2H2 | MinI1 | S2 | PT | S3 | V3H13 | V3H21 | I2H19 | V2H3 | OHDV3 | V1H13 |
CosPhi3 | P3 | MinV1 | I3H15 | S2 | I2 | QT | VL23 | MinI3 | EHDV1 | EHDV2 | I2H16 | IT | KFactorV1 |
V1H19 | VL12 | V3H13 | KFactorI3 | I2 | V2H20 | CosPhi3 | OHDV2 | I2H10 | I3H14 | MaxI1 | V1H18 | THDV3 | MinI2 |
V3H3 | AvrI2 | V2H14 | I1H4 | IT | I2H20 | OHDV3 | I2H7 | I1H9 | Q2 | I2H6 | KFactorV1 | I1 | V2H10 |
VLT | MinI3 | AvrI2 | V3H15 | P1 | V1H12 | ST | V3H21 | I3H9 | V3H5 | I1H20 | V1H22 | V2H6 | I3H14 |
I2H13 | I2H19 | V3H5 | MinV1 | S3 | EHDI2 | THDV3 | V3H13 | V2H3 | EHDI2 | Q3 | IT | V3H21 | CosPhi3 |
V3H21 | VL23 | I1H21 | I2H15 | MaxI1 | VL23 | CosPhi2 | Freq | V3H7 | V1H14 | I2H14 | CosPhi3 | Q3 | AvrI2 |
Class No. | Class Name | General Parameters | Harmonic Parameters |
---|---|---|---|
1 | Capacitor | P2, I1, CosPhi1, CosPhi2, CosPhi3, CosPhiT | V2H13, V3H11, V1H6, V3H3, V1H3 |
2 | Control System | I2, I1, P1, P2, KFactorV1, CosPhi2 | V3H13, I2H15, V3H3, V1H3 |
3 | COS | CosPhi3, CosPhi1, MaxI1, VL23, VL31, I2 | V1H19, V3H13 |
4 | Earth | I1, I2, P1, PT, I3, QT, THDV1, CosPhiT | V3H13, I3H13, V1H13, V3H21, V1H11, I1H11 |
5 | Flywheel Diode | CosPhiT, CosPhi1, I1, I2, CosPhi3, P3, P2, | V3H3, I3H17, V3H17, V3H5, I1H13, I3H13 |
6 | Reactor | CosPhi3, CosPhi2, CosPhiT, I1, MaxI2, IT, P1, QT | V3H13, V1H13, V1H3, I2H13, V3H3, |
7 | Thyristor | CosPhi3, THDV1, I2, ST, I1, P1, S2, CosPhiT, KFactorV1 | V3H13, V1H13, V2H17, I1H13, V2H13 |
8 | Temperature | CosPhiT, P1, I1, OHDI2, EHDV3, THDV1, OHDI3, CosPhi3 | V1H13, V3H3, V1H3, V3H13, V3H11, V1H7, V3H5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moosavi, S.; Razavi-Far, R.; Palade, V.; Saif, M. Explainable Artificial Intelligence Approach for Diagnosing Faults in an Induction Furnace. Electronics 2024, 13, 1721. https://doi.org/10.3390/electronics13091721
Moosavi S, Razavi-Far R, Palade V, Saif M. Explainable Artificial Intelligence Approach for Diagnosing Faults in an Induction Furnace. Electronics. 2024; 13(9):1721. https://doi.org/10.3390/electronics13091721
Chicago/Turabian StyleMoosavi, Sajad, Roozbeh Razavi-Far, Vasile Palade, and Mehrdad Saif. 2024. "Explainable Artificial Intelligence Approach for Diagnosing Faults in an Induction Furnace" Electronics 13, no. 9: 1721. https://doi.org/10.3390/electronics13091721
APA StyleMoosavi, S., Razavi-Far, R., Palade, V., & Saif, M. (2024). Explainable Artificial Intelligence Approach for Diagnosing Faults in an Induction Furnace. Electronics, 13(9), 1721. https://doi.org/10.3390/electronics13091721