Enhancement of Phase Dynamic Range in Design of Reconfigurable Metasurface Reflect Array Antenna Using Two Types of Unit Cells for E Band Communication
Abstract
:1. Introduction
2. Unit Cell and MS Design
3. Simulation Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dahri, M.H.; Jamaluddin, M.H.; Abbasi, M.I.; Kamarudin, M.R. A Review of Wideband Reflectarray Antennas for 5G Communication Systems. IEEE Access 2017, 5, 17803–17815. [Google Scholar] [CrossRef]
- Roederer, A.G. Reflect array antennas. In Proceedings of the 2009 3rd European Conference on Antennas and Propagation, Berlin, Germany, 23–27 March 2009; pp. 18–22. [Google Scholar]
- Rothschild, D.; Rahamim, E.; Abramovich, A. Innovative Reconfigurable Metasurface 2-D Beam-Steerable Reflector for 5G Wireless Communication. Electronics 2020, 9, 1191. [Google Scholar] [CrossRef]
- Litmanovitch, G.; Rrotshild, D.; Abramovich, A. Flat mirror for millimeter-wave and terahertz imaging systems using an inexpensive metasurface. Chin. Opt. Lett. 2017, 15, 011101. [Google Scholar] [CrossRef]
- Rothschild, D.; Abramovich, A. Wideband reconfigurable entire Ku-band metasurface beam-steerable reflector for satellite communications. IET Microw. Antennas Propag. 2019, 13, 334–339. [Google Scholar] [CrossRef]
- Bhattacharyya, A.K. Phased Array Antennas: Floquet Analysis, Synthesis, BFNs, and Active Array Systems; John Wiley & Sons: Hoboken, NJ, USA, 2006; Volume 179. [Google Scholar]
- Wang, Z.; Liao, D.; Zhang, T.; Chen, T.; Ruan, Y.; Zheng, B. Metasurface-based focus-tunable mirror. Opt. Express 2019, 27, 30332–30339. [Google Scholar] [CrossRef] [PubMed]
- Vásquez-Peralvo, J.A.; Fernández-González, J.M.; Rigelsford, J.M. Beam Steering Using Active Artificial Magnetic Conductors: A 10-Degree Step Controlled Steering. IEEE Access 2020, 8, 177964–177975. [Google Scholar] [CrossRef]
- Rütschlin, M.; Wittig, T.; Iluz, Z. Phased antenna array design with CST STUDIO SUITE. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar]
- Ghasemifard, F.; Norgren, M.; Quevedo-Teruel, O. Dispersion analysis of 2-D glide-symmetric corrugated metasurfaces using mode-matching technique. IEEE Microw. Wirel. Compon. Lett. 2017, 28, 1–3. [Google Scholar] [CrossRef]
- Sievenpiper, D.F.; Schaffner, J.H.; Song, H.J.; Loo, R.Y.; Tangonan, G. Two-dimensional beam steering using an electrically tunable impedance surface. IEEE Trans. Antennas Propag. 2003, 51, 2713–2722. [Google Scholar] [CrossRef]
- Nadeem, M.; Shoaib, N.; Raza, A.; Saeed, W.; Shoaib, I.; Shoaib, S. 2-Dimensional (2D) Beam Steering-Antenna Using Active PRS for 5G Applications. Micromachines 2023, 14, 110. [Google Scholar] [CrossRef]
- Li, A.; Singh, S.; Sievenpiper, D. Metasurfaces and their applications. Nanophotonics 2018, 7, 989–1011. [Google Scholar] [CrossRef]
- Bukhari, S.S.; Vardaxoglou, J.Y.; Whittow, W. A metasurfaces review: Definitions and applications. Appl. Sci. 2019, 9, 2727. [Google Scholar] [CrossRef]
- Faenzi, M.; Minatti, G.; González-Ovejero, D.; Caminita, F.; Martini, E.; Della Giovampaola, C.; Maci, S. Metasurface antennas: New models, applications and realizations. Sci. Rep. 2019, 9, 10178. [Google Scholar] [CrossRef]
- Turpin, J.P.; Bossard, J.A.; Morgan, K.L.; Werner, D.H.; Werner, P.L. Reconfigurable and tunable metamaterials: A review of the theory and applications. Int. J. Antennas Propag. 2014, 2014, 429837. [Google Scholar] [CrossRef]
- Yang, H.H.; Xu, L.M.; Yang, F.; Cao, X.Y.; Xu, S.H.; Gao, J.; Li, S.J. Phase quantization effects of coded metasurface on agile scattering field control. Microw. Opt. Technol. Lett. 2017, 59, 738–743. [Google Scholar] [CrossRef]
- Ting, T.L. The technology of liquid crystal-based antenna. Opt. Express 2019, 27, 17138–17153. [Google Scholar] [CrossRef] [PubMed]
- Yaghmaee, P.; Karabey, O.H.; Bates, B.; Fumeaux, C.; Jakoby, R. Electrically tuned microwave devices using liquid crystal technology. Int. J. Antennas Propag. 2013, 2013, 824214. [Google Scholar] [CrossRef]
- Maune, H.; Jost, M.; Reese, R.; Polat, E.; Nickel, M.; Jakoby, R. Microwave liquid crystal technology. Crystals 2018, 8, 355. [Google Scholar] [CrossRef]
- Foo, S. Liquid-crystal-tunable metasurface antennas. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 3026–3030. [Google Scholar]
- Momeni Hasan Abadi, S.M.A.; Booske, J.H.; Behdad, N. MAcro-Electro-Mechanical Systems (MÆMS) based concept for microwave beam steering in reflectarray antennas. J. Appl. Phys. 2016, 120, 054901. [Google Scholar] [CrossRef]
- Mavridou, M.; Feresidis, A.P. Dynamically reconfigurable high impedance and frequency selective metasurfaces using piezoelectric actuators. IEEE Trans. Antennas Propag. 2016, 64, 5190–5197. [Google Scholar] [CrossRef]
- Vassos, E.; Churm, J.; Feresidis, A. Ultra-low-loss tunable piezoelectric-actuated metasurfaces achieving 360° or 180° dynamic phase shift at millimeter-waves. Sci. Rep. 2020, 10, 15679. [Google Scholar] [CrossRef]
- Asgharian, R.; Zakeri, B.G.; Yazdi, M. A Narrow Beam, Beam Steerable, and Low Side-Lobe Reflectarray Based on Macro Electro-Mechanical Technique. Prog. Electromagn. Res. 2020, 100, 73–82. [Google Scholar] [CrossRef]
- Nie, J.; Tan, Y.Q.; Ji, C.L.; Liu, R.P. Analysis of Ku-Band steerable metamaterials reflect with tunable varactor diodes. In Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 8–11 August 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 709–713. [Google Scholar]
- Rotshild, D.; Abramovich, A. Realization and validation of continuous tunable metasurface for high resolution beam steering reflector at K-band frequency. Int. J. RF Microw. Comput.-Aided Eng. 2021, 31, e22559. [Google Scholar] [CrossRef]
- Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light. Sci. Appl. 2014, 3, e218. [Google Scholar] [CrossRef]
- Amri, M.M.; Tran, N.M.; Park, J.H.; Kim, D.I.; Choi, K.W. A Programmable Binary Metasurface for Wireless Power Transfer Application. In Proceedings of the 2020 IEEE Wireless Power Transfer Conference (WPTC), Seoul, Republic of Korea, 15–19 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 334–337. [Google Scholar]
- Huang, C.; Sun, B.; Pan, W.; Cui, J.; Wu, X.; Luo, X. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface. Sci. Rep. 2017, 7, 42302. [Google Scholar] [CrossRef] [PubMed]
- Rahamim, E.; Rotshild, D.; Abramovich, A. Performance Enhancement of Reconfigurable Metamaterial Reflector Antenna by Decreasing the Absorption of the Reflected Beam. Appl. Sci. 2021, 11, 8999. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, R.; Song, W.; Lin, X.; Xie, B.; Wang, J.; Zhao, R. W-Band Single-Layer Broadband Reflectarray Antenna. IEEE Access 2023, 11, 66309–66317. [Google Scholar] [CrossRef]
- Peng, Z.; Li, L.; Wang, M.; Zhang, Z.; Liu, Q.; Liu, Y.; Liu, R. An effective coverage scheme with passive-reflectors for urban millimeter-wave communication. IEEE Antennas Wirel. Propag. 2015, 15, 398–401. [Google Scholar] [CrossRef]
- Available online: https://www.rogerscorp.com/advanced-electronics-solutions/rt-duroid-laminates/rt-duroid-5880-laminates (accessed on 3 May 2024).
- Liu, C.; Yang, F.; Xu, S.; Li, M. An E-Band Reconfigurable Reflectarray Antenna Using p-i-n Diodes for Millimeter-Wave Communications. IEEE Trans. Antennas Propag. 2023, 71, 6924–6929. [Google Scholar] [CrossRef]
- Bildik, S.; Dieter, S.; Fritzsch, C.; Menzel, W.; Jakoby, R. Reconfigurable folded reflectarray antenna based upon liquid crystal technology. IEEE Trans. Antennas Propag. 2015, 63, 122–132. [Google Scholar] [CrossRef]
- Sahoo, D.K.; Chakraborty, C.; Ruchi; Kundu, D.; Patnaik, A.; Chakraborty, A. A 1-Bit Coding Reconfigurable Metasurface Reflector for Millimeter Wave Communications in E-Band. In Proceedings of the 2023 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Ahmedabad, India, 10–14 December 2023; pp. 1–4. [Google Scholar] [CrossRef]
Parameters | Description | Value (mm) |
---|---|---|
W | Unit cell size | 0.8 |
Wp | Patch size | Variable |
t | Copper thickness | 0.035 |
g | Air gap thickness | Type A: g = 1.95, type B: g = 1.75 |
h | Dielectric substrate thickness | 0.254 |
D | Diameter of the reflector | 80 |
F | Focal length of the reflector | 80 |
f | Frequency | 80 GHz |
Feature | Ref. [35] | Ref. [36] | Ref. [37] | This Work |
---|---|---|---|---|
Tuning technology | PIN | LC | PIN | Piezoelectric |
Frequency (GHz) | 73 | 78 | 78 | 80 |
Response time | nsec | sec | nsec | µs |
Phase range | 180° | --- | 180° ± 30° | 312° |
Gain (dBi) | 16.8 | 25.1 | --- | >25 |
Aperture (mm) | 32 × 32 | --- | 54 × 27 | Diameter of 80 mm |
Losses (dB) | 6.2 (per element) | >10 (per element) | 2.7 | <0.2 |
BW (GHz) | --- | --- | 74–84 | 78–82 |
Steering range | ±70° | ±6° | ±60° | ±3° |
1D/2D | 2D | 1D | 1D | 1D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rozban, D.; Barom, A.; Kedar, G.; Etinger, A.; Rabinovitz, T.; Abramovich, A. Enhancement of Phase Dynamic Range in Design of Reconfigurable Metasurface Reflect Array Antenna Using Two Types of Unit Cells for E Band Communication. Electronics 2024, 13, 1779. https://doi.org/10.3390/electronics13091779
Rozban D, Barom A, Kedar G, Etinger A, Rabinovitz T, Abramovich A. Enhancement of Phase Dynamic Range in Design of Reconfigurable Metasurface Reflect Array Antenna Using Two Types of Unit Cells for E Band Communication. Electronics. 2024; 13(9):1779. https://doi.org/10.3390/electronics13091779
Chicago/Turabian StyleRozban, Daniel, Asaf Barom, Gil Kedar, Ariel Etinger, Tamir Rabinovitz, and Amir Abramovich. 2024. "Enhancement of Phase Dynamic Range in Design of Reconfigurable Metasurface Reflect Array Antenna Using Two Types of Unit Cells for E Band Communication" Electronics 13, no. 9: 1779. https://doi.org/10.3390/electronics13091779
APA StyleRozban, D., Barom, A., Kedar, G., Etinger, A., Rabinovitz, T., & Abramovich, A. (2024). Enhancement of Phase Dynamic Range in Design of Reconfigurable Metasurface Reflect Array Antenna Using Two Types of Unit Cells for E Band Communication. Electronics, 13(9), 1779. https://doi.org/10.3390/electronics13091779