Predicting Gait Parameters of Leg Movement with sEMG and Accelerometer Using CatBoost Machine Learning
Abstract
:1. Introduction
- Analyzed ACC and sEMG signals to extract features relevant to gait analysis, enhancing the understanding of gait dynamics.
- Applied feature selection methods to recognize the important features that contribute to the accuracy of the gait parameter predictions.
- Employed ML techniques to predict temporospatial 17 gait parameters.
2. Materials and Methods
2.1. sEMG and Accelerometer Measuring Device
2.2. Experiment Protocol
2.3. Data Processing
2.3.1. Gait Parameters
2.3.2. Signal Parameters
2.4. Feature Selection
2.5. Machine Learning Models
2.5.1. CatBoost
2.5.2. XGBoost
2.5.3. Decision Tree
2.6. Statistical Analysis
- SSR (Sum of Squares of Residuals) calculates the sum of the squared differences between the observed values and the values predicted by the model. It is mathematically represented as:
- TSS (Total Sum of Squares) represents the overall variance within the dataset, determined by summing the squared deviations of each observed value from the dataset’s mean:
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hausdorff, J.M. Gait Dynamics, Fractals and Falls: Finding Meaning in the Stride-to-Stride Fluctuations of Human Walking. Hum. Mov. Sci. 2007, 26, 555–589. [Google Scholar] [CrossRef]
- Kim, J.-K.; Bae, M.-N.; Lee, K.B.; Hong, S.G. Identification of Patients with Sarcopenia Using Gait Parameters Based on Inertial Sensors. Sensors 2021, 21, 1786. [Google Scholar] [CrossRef]
- Agostini, V.; Ghislieri, M.; Rosati, S.; Balestra, G.; Knaflitz, M. Surface Electromyography Applied to Gait Analysis: How to Improve Its Impact in Clinics? Front. Neurol. 2020, 11, 561815. [Google Scholar] [CrossRef]
- Hasni, H.; Yahya, N.; Asirvadam, V.S.; Jatoi, M.A. Analysis of Electromyogram (EMG) for Detection of Neuromuscular Disorders. In Proceedings of the 2018 International Conference on Intelligent and Advanced System (ICIAS), Kuala Lumpur, Malaysia, 13–14 August 2018; pp. 1–6. [Google Scholar]
- Krishnan, B.; Zanelli, S.; Boudaoud, S.; Scapucciati, L.; McPhee, J.; Jiang, N. Age-Sensitive High Density Surface Electromyogram Indices for Detecting Muscle Fatigue Using Core Shape Modelling. Biomed. Signal Process. Control 2023, 81, 104446. [Google Scholar] [CrossRef]
- McManus, L.; De Vito, G.; Lowery, M.M. Analysis and Biophysics of Surface EMG for Physiotherapists and Kinesiologists: Toward a Common Language with Rehabilitation Engineers. Front. Neurol. 2020, 11, 576729. [Google Scholar] [CrossRef]
- Merletti, R.; Hermens, H.J. Detection and Conditioning of the Surface EMG Signal. In Electromyography; Wiley: Hoboken, NJ, USA, 2004; pp. 107–131. [Google Scholar]
- Sutherland, D.H. The Evolution of Clinical Gait Analysis Part l: Kinesiological EMG. Gait Posture 2001, 14, 61–70. [Google Scholar] [CrossRef]
- Seifer, A.-K.; Dorschky, E.; Küderle, A.; Moradi, H.; Hannemann, R.; Eskofier, B.M. EarGait: Estimation of Temporal Gait Parameters from Hearing Aid Integrated Inertial Sensors. Sensors 2023, 23, 6565. [Google Scholar] [CrossRef]
- Czech, M.; Patel, S. GaitPy: An Open-Source Python Package for Gait Analysis Using an Accelerometer on the Lower Back. J. Open Source Softw. 2019, 4, 1778. [Google Scholar] [CrossRef]
- Khant, M.; Gouwanda, D.; Gopalai, A.A.; Lim, K.H.; Foong, C.C. Estimation of Lower Extremity Muscle Activity in Gait Using the Wearable Inertial Measurement Units and Neural Network. Sensors 2023, 23, 556. [Google Scholar] [CrossRef] [PubMed]
- Khera, P.; Kumar, N. Role of Machine Learning in Gait Analysis: A Review. J. Med. Eng. Technol. 2020, 44, 441–467. [Google Scholar] [CrossRef] [PubMed]
- Patathong, T.; Klaewkasikum, K.; Woratanarat, P.; Rattanasiri, S.; Anothaisintawee, T.; Woratanarat, T.; Thakkinstian, A. The Efficacy of Gait Rehabilitations for the Treatment of Incomplete Spinal Cord Injury: A Systematic Review and Network Meta-Analysis. J. Orthop. Surg. Res. 2023, 18, 60. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Min, J.Y.; Byun, S. Electromyogram-Based Classification of Hand and Finger Gestures Using Artificial Neural Networks. Sensors 2021, 22, 225. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-H.; Chang, K.-M.; Cheng, D.-C. The Progression of Muscle Fatigue During Exercise Estimation with the Aid of High-Frequency Component Parameters Derived from Ensemble Empirical Mode Decomposition. IEEE J. Biomed. Health Inform. 2014, 18, 1647–1658. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-H.; Lin, C.-B.; Chen, Y.; Chen, W.; Huang, T.-S.; Hsu, C.-Y. An EMG Patch for the Real-Time Monitoring of Muscle-Fatigue Conditions During Exercise. Sensors 2019, 19, 3108. [Google Scholar] [CrossRef]
- Kidziński, Ł.; Delp, S.; Schwartz, M. Automatic Real-Time Gait Event Detection in Children Using Deep Neural Networks. PLoS ONE 2019, 14, e0211466. [Google Scholar] [CrossRef]
- Arunganesh, K.; Nagarajan, G.; Sivakumaran, N.; Karthick, P.A. Recognition of Lower Limb Movements Using Machine Learning Methods and Bispectral Maps of Wireless SEMG Measurements. IEEE Sensors Lett. 2023, 7, 7004604. [Google Scholar] [CrossRef]
- Rastegari, E.; Azizian, S.; Ali, H. Machine Learning and Similarity Network Approaches to Support Automatic Classification of Parkinson’s Diseases Using Accelerometer-Based Gait Analysis. Proc. Annu. Hawaii Int. Conf. Syst. Sci. 2019, 2019, 4231–4242. [Google Scholar] [CrossRef]
- Trabassi, D.; Serrao, M.; Varrecchia, T.; Ranavolo, A.; Coppola, G.; De Icco, R.; Tassorelli, C.; Castiglia, S.F. Machine Learning Approach to Support the Detection of Parkinson’s Disease in IMU-Based Gait Analysis. Sensors 2022, 22, 3700. [Google Scholar] [CrossRef]
- Howcroft, J.; Kofman, J.; Lemaire, E.D. Prospective Fall-Risk Prediction Models for Older Adults Based on Wearable Sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1812–1820. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, Y.; Zanotto, D. Accurate Ambulatory Gait Analysis in Walking and Running Using Machine Learning Models. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 191–202. [Google Scholar] [CrossRef]
- Jani, D.; Varadarajan, V.; Parmar, R.; Bohara, M.H.; Garg, D.; Ganatra, A.; Kotecha, K. An Efficient Gait Abnormality Detection Method Based on Classification. J. Sens. Actuator Netw. 2022, 11, 31. [Google Scholar] [CrossRef]
- Wu, X.; Wang, P.; Wang, J.; Zhang, J.; Chen, W.; Wang, X. Prediction of Lower Limb Action Intention Based on Surface EMG Signal. In Proceedings of the 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA), Chengdu, China, 1–4 August 2021; pp. 1679–1684. [Google Scholar]
- Armand, S.; Watelain, E.; Roux, E.; Mercier, M.; Lepoutre, F.-X. Linking Clinical Measurements and Kinematic Gait Patterns of Toe-Walking Using Fuzzy Decision Trees. Gait Posture 2007, 25, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-H.; Ting, C.-E.; Wang, J.-J.; Chang, C.-J.; Chen, W.; Sharma, A.K. Estimation of Gait Parameters for Adults with Surface Electromyogram Based on Machine Learning Models. Sensors 2024, 24, 734. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Ding, Z.; Yi, C.; Guo, H.; Wang, Z.; Zhu, J.; Jiang, F. A Novel SEMG-Based Gait Phase-Kinematics-Coupled Predictor and Its Interaction with Exoskeletons. Front. Neurorobot. 2021, 15, 704226. [Google Scholar] [CrossRef]
- Carroll, K.; Kennedy, R.A.; Koutoulas, V.; Bui, M.; Kraan, C.M. Validation of Shoe-Worn Gait Up Physilog® 5 Wearable Inertial Sensors in Adolescents. Gait Posture 2022, 91, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Dadashi, F.; Mariani, B.; Rochat, S.; Büla, C.J.; Santos-Eggimann, B.; Aminian, K. Gait and Foot Clearance Parameters Obtained Using Shoe-Worn Inertial Sensors in a Large-Population Sample of Older Adults. Sensors 2014, 14, 443–457. [Google Scholar] [CrossRef] [PubMed]
- Homan, K.; Yamamoto, K.; Kadoya, K.; Ishida, N.; Iwasaki, N. Comprehensive Validation of a Wearable Foot Sensor System for Estimating Spatiotemporal Gait Parameters by Simultaneous Three-Dimensional Optical Motion Analysis. BMC Sports Sci. Med. Rehabil. 2022, 14, 71. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological Time-Series Analysis Using Approximate Entropy and Sample Entropy. Am. J. Physiol. Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed]
- Pincus, S.M. Approximate Entropy as a Measure of System Complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef]
- Merletti, R.; Parker, P.A. Electromyography: Physiology, Engineering, and Noninvasive Applications; Merletti, R., Parker, P., Eds.; Wiley: Hoboken, NJ, USA, 2004; ISBN 9780471675808. [Google Scholar]
- De Luca, C.J. The Use of Surface Electromyography in Biomechanics. J. Appl. Biomech. 1997, 13, 135–163. [Google Scholar] [CrossRef]
- Clancy, E.; Morin, E.; Merletti, R. Sampling, Noise-Reduction and Amplitude Estimation Issues in Surface Electromyography. J. Electromyogr. Kinesiol. 2002, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hancock, J.T.; Khoshgoftaar, T.M. CatBoost for Big Data: An Interdisciplinary Review. J. Big Data 2020, 7, 94. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Wu, L.; Ma, X.; Zhang, W.; Fan, J.; Yu, X.; Zeng, W.; Zhou, H. Evaluation of CatBoost Method for Prediction of Reference Evapotranspiration in Humid Regions. J. Hydrol. 2019, 574, 1029–1041. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA; Volume 42, pp. 785–794. [Google Scholar]
- Jin, Q.; Fan, X.; Liu, J.; Xue, Z.; Jian, H. Estimating Tropical Cyclone Intensity in the South China Sea Using the XGBoost Model and FengYun Satellite Images. Atmosphere 2020, 11, 423. [Google Scholar] [CrossRef]
- Kotsiantis, S.B. Decision Trees: A Recent Overview. Artif. Intell. Rev. 2013, 39, 261–283. [Google Scholar] [CrossRef]
- Jena, M.; Dehuri, S. DecisionTree for Classification and Regression: A State-of-the Art Review. Informatica 2020, 44, 405–420. [Google Scholar] [CrossRef]
- Zhan, C.; Gan, A.; Hadi, M. Prediction of Lane Clearance Time of Freeway Incidents Using the M5P Tree Algorithm. IEEE Trans. Intell. Transp. Syst. 2011, 12, 1549–1557. [Google Scholar] [CrossRef]
- Jiang, T.; Xiao, Q.; Yin, X. Music Generation Using Bidirectional Recurrent Network. In Proceedings of the 2019 IEEE 2nd International Conference on Electronics Technology (ICET), Chengdu, China, 10–13 May 2019; pp. 564–569. [Google Scholar]
- Pheasant, S.T. A Review of: “Human Walking”. By V. T. INMAN, H.J. RALSTON and F. TODD. (Baltimore, London: Williams & Wilkins, 1981.) [Pp.154.]. Ergonomics 1981, 24, 969–976. [Google Scholar] [CrossRef]
- Chambers, H.G.; Sutherland, D.H. A Practical Guide to Gait Analysis. J. Am. Acad. Orthop. Surg. 2002, 10, 222–231. [Google Scholar] [CrossRef]
- Muro-de-la-Herran, A.; Garcia-Zapirain, B.; Mendez-Zorrilla, A. Gait Analysis Methods: An Overview of Wearable and Non-Wearable Systems, Highlighting Clinical Applications. Sensors 2014, 14, 3362–3394. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European Consensus on Definition and Diagnosis. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed]
Type | Name | Units | Description |
---|---|---|---|
Temporal Parameter | Heel Strike (HS) | Seconds | The moment the heel makes contact with the ground. |
Gait Cycle Time (GCT) | Steps/minute | Gait cycle duration is the time between heel strikes on the same foot. | |
Double Leg Support (DS) | % of cycle duration | The bipedal stance period is when both feet are on the ground during the gait cycle. | |
Cadence | Steps/minute | The number of steps walked per minute. | |
Stance | % of cycle duration | The foot hits the ground in the gait cycle’s stance phase. | |
Swing | % of gait cycle | The swing phase refers to the interval when the foot is not in contact with the ground during the gait cycle. | |
Foot Flat Ratio (FFr) | % of stance | The phase of the stance in which the foot is completely in contact with the ground, with the sole entirely touching the surface. | |
Push Ratio (Purify) | % of stance | The time between flat soles and lifted toes in stance. | |
Load Ratio (LDr) | % of stance | The stance period from heel strike to full sole contact. | |
Spatial Parameters | Step Length | meters | The spatial distance between the feet when positioned on the ground. |
Stride Length | meters | Distance between heel strikes, equaling one gait cycle. | |
Gait Speed | m/s | Speed of forward walking. | |
Peak Swing | m/s | Maximum angular velocity from heel to toe during swing. | |
Foot Pitch Angle at Heel Strike (HSP) | degree | The angle formed by the foot’s contact with the ground upon impact. | |
Foot Pitch Angle at Toe-Off (TOP) | degree | The angle of the toes relative to the ground just before lift-off at the end of the propulsion phase. | |
Swing Width | meters | The largest sideways distance in the swing phase corresponds to the maximum lateral offset. | |
3D Path Length | % of stride length | Depicts the scaled trajectory of the 3D gait cycle using stride length. |
No. | Features | Type |
---|---|---|
1 | MF_X-axis | ACC |
2 | MDF_X-axis | ACC |
3 | STD_X-axis | ACC |
4 | STD_Y-axis | ACC |
5 | RMS_X-axis | ACC |
6 | RMS_Y-axis | ACC |
7 | SampEn of Calf | sEMG |
8 | SampEn of Thigh | sEMG |
Name | CatBoost | XGBoost | DT | |||
---|---|---|---|---|---|---|
L | R | L | R | L | R | |
HS | 0.77 | 0.82 | 0.78 | 0.77 | 0.84 | 0.85 |
GCT | 0.93 | 0.95 | 0.94 | 0.94 | 0.85 | 0.86 |
Cadence | 0.91 | 0.93 | 0.92 | 0.93 | 0.83 | 0.84 |
Stance | 0.96 | 0.94 | 0.96 | 0.91 | 0.92 | 0.76 |
Swing | 0.96 | 0.94 | 0.95 | 0.91 | 0.92 | 0.76 |
LDr | 0.91 | 0.93 | 0.93 | 0.93 | 0.80 | 0.72 |
FFr | 0.94 | 0.95 | 0.95 | 0.93 | 0.79 | 0.82 |
PUr | 0.93 | 0.95 | 0.94 | 0.92 | 0.81 | 0.79 |
DS | 0.96 | 0.96 | 0.95 | 0.95 | 0.92 | 0.83 |
Stride Length | 0.92 | 0.93 | 0.93 | 0.91 | 0.82 | 0.85 |
Gait Speed | 0.80 | 0.84 | 0.80 | 0.84 | 0.70 | 0.75 |
Peak Swing | 0.96 | 0.97 | 0.96 | 0.96 | 0.88 | 0.84 |
HSP | 0.96 | 0.96 | 0.96 | 0.95 | 0.89 | 0.77 |
TOP | 0.96 | 0.96 | 0.96 | 0.96 | 0.89 | 0.82 |
Swing Width | 0.94 | 0.92 | 0.94 | 0.91 | 0.85 | 0.75 |
3D Path Length | 0.26 | 0.85 | 0.24 | 0.83 | 0.24 | 0.73 |
Step Length | 0.86 | 0.86 | 0.87 | 0.86 | 0.77 | 0.78 |
Mean | 0.878 | 0.921 | 0.881 | 0.906 | 0.807 | 0.795 |
STD | 0.169 | 0.047 | 0.174 | 0.052 | 0.157 | 0.046 |
Models | MSE | RMSE | MAE | MAPE |
---|---|---|---|---|
CatBoost | 7.65 | 1.49 | 1.00 | 0.03 |
XGBoost | 7.81 | 1.53 | 1.00 | 0.03 |
DT | 23.22 | 2.56 | 1.49 | 0.04 |
Models | Accuracy (R2) |
---|---|
CatBoost | 91% |
XGBoost | 81% |
DT | 65% |
Name | L | R |
---|---|---|
HS | 0.69 | 0.81 |
GCT | 0.90 | 0.92 |
Cadence | 0.88 | 0.90 |
Stance | 0.94 | 0.90 |
Swing | 0.94 | 0.90 |
LDr | 0.88 | 0.86 |
FFr | 0.89 | 0.89 |
PUr | 0.89 | 0.90 |
DS | 0.93 | 0.93 |
Stride Length | 0.89 | 0.90 |
Gait Speed | 0.78 | 0.82 |
Peak Swing | 0.93 | 0.93 |
HSP | 0.92 | 0.89 |
TOP | 0.94 | 0.94 |
Swing Width | 0.90 | 0.92 |
3D Path Length | 0.22 | 0.83 |
Step Length | 0.84 | 0.84 |
Mean ± STD | 0.846 ± 0.174 | 0.886 ± 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, A.K.; Liu, S.-H.; Zhu, X.; Chen, W. Predicting Gait Parameters of Leg Movement with sEMG and Accelerometer Using CatBoost Machine Learning. Electronics 2024, 13, 1791. https://doi.org/10.3390/electronics13091791
Sharma AK, Liu S-H, Zhu X, Chen W. Predicting Gait Parameters of Leg Movement with sEMG and Accelerometer Using CatBoost Machine Learning. Electronics. 2024; 13(9):1791. https://doi.org/10.3390/electronics13091791
Chicago/Turabian StyleSharma, Alok Kumar, Shing-Hong Liu, Xin Zhu, and Wenxi Chen. 2024. "Predicting Gait Parameters of Leg Movement with sEMG and Accelerometer Using CatBoost Machine Learning" Electronics 13, no. 9: 1791. https://doi.org/10.3390/electronics13091791
APA StyleSharma, A. K., Liu, S. -H., Zhu, X., & Chen, W. (2024). Predicting Gait Parameters of Leg Movement with sEMG and Accelerometer Using CatBoost Machine Learning. Electronics, 13(9), 1791. https://doi.org/10.3390/electronics13091791