A Multi-Regime Car-Following Model Capturing Traffic Breakdown
Abstract
:1. Introduction
2. Car-Following Model
3. Model Simulation
3.1. Simulation of Traffic Flow on a Circular Road
3.2. Simulation of Traffic Flow on an Open Road with a Bottleneck
4. Model Calibration and Validation by Car-Following Field Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schönhof, M.; Helbing, D. Empirical features of congested traffic states and their implications for traffic modeling. Transp. Sci. 2007, 41, 135–166. [Google Scholar] [CrossRef]
- Schönhof, M.; Helbing, D. Criticism of three-phase traffic theory. Transp. Res. Part B Methodol. 2009, 43, 784–797. [Google Scholar] [CrossRef]
- Agyemang-Duah, K.; Hall, F.L. Some issues regarding the numerical value of freeway capacity. highway capacity and level of service. In Highway Capacity and Level of Service; Routledge: London, UK, 2021; pp. 1–15. [Google Scholar]
- Cassidy, M.J.; Bertini, R.L. Some traffic features at freeway bottlenecks. Transp. Res. Part B Methodol. 1999, 33, 25–42. [Google Scholar] [CrossRef]
- Edie, L.C.; Foote, R.S. Traffic flow in tunnels. Highw. Res. Board Proc. 1958, 37, 334–344. [Google Scholar]
- Edie, L.C. Car-following and steady-state theory for noncongested traffic. Oper. Res. 1961, 9, 66–76. [Google Scholar] [CrossRef]
- Athol, P.J.; Bullen, A.G.R. Multiple ramp control for a freeway bottleneck. Highw. Res. Rec. 1973, 456, 50–54. [Google Scholar]
- Elefteriadou, L.; Roess, R.P.; McShane, W.R. Probabilistic nature of breakdown at freeway merge junctions. Transp. Res. Rec. 1995, 1484, 80–89. [Google Scholar]
- Banks, J.H. Two-capacity phenomenon at freeway bottlenecks: A basis for ramp metering. Transp. Res. Rec. 1991, 1320, 83–90. [Google Scholar]
- Hall, F.L.; Kwaku, A.-D. Freeway capacity drop and the definition of capacity. Transp. Res. Rec. 1991, 1320, 191–198. [Google Scholar]
- Persaud, B.; Hurdle, V. Some new data that challenge some old ideas about speed-flow relationships. Transp. Res. Rec. 1988, 1194, 191–198. [Google Scholar]
- Persaud, B.; Yagar, S.; Brownlee, R. Exploration of the breakdown phenomenon in freeway traffic. Transp. Res. Rec. J. Transp. Res. Board 1998, 1634, 64–69. [Google Scholar] [CrossRef]
- Matt, L.; Elefteriadou, L. Defining freeway capacity as function of breakdown probability. Transp. Res. Rec. J. Transp. Res. Board 2001, 1776, 43–51. [Google Scholar]
- Zhang, L.; Levinson, D. Some properties of flows at freeway bottlenecks. Transp. Res. Rec. J. Transp. Res. Board 2004, 1883, 122–131. [Google Scholar] [CrossRef]
- Yuan, K.; Knoop, V.L.; Hoogendoorn, S.P. A microscopic investigation into the capacity drop: Impacts of longitudinal behavior on the queue discharge rate. Transp. Sci. 2017, 51, 852–862. [Google Scholar] [CrossRef]
- Arnesen, P.; Hjelkrem, O.A. An estimator for traffic breakdown probability based on classification of transitional breakdown events. Transp. Sci. 2018, 52, 593–602. [Google Scholar] [CrossRef]
- Baer, N.; Richard, J.B.; van Ommeren, J.-K.C. Threshold Queueing to Describe the Fundamental Diagram of Uninterrupted Traffic. Transp. Sci. 2019, 53, 585–596. [Google Scholar] [CrossRef]
- Koshi, M. Bottleneck capacity of expressways. J. Jpn. Soc. Civ. Eng. 1986, 371, 1–7. [Google Scholar]
- Koshi, M.; Kuwahara, M.; Akahane, H. Capacity of sags and tunnels on Japanese motorways. ITE J. 1992, 62, 17–22. [Google Scholar]
- Newell, G.F. A theory of platoon formation in tunnel traffic. Oper. Res. 1959, 7, 589–598. [Google Scholar] [CrossRef]
- Iwasaki, M. Empirical analysis of congested traffic flow characteristics and free speed affected by geometric factors on an intercity expressway. Transp. Res. Rec. 1991, 1320, 242–250. [Google Scholar]
- Tadaki, S.; Nishinarib, K.; Kikuchic, M.; Sugiyamad, Y.; Yukawa, S. Analysis of congested flow at the upper stream of a tunnel. Phys. A Stat. Mech. Its Appl. 2002, 315, 156–162. [Google Scholar] [CrossRef]
- Brilon, W.; Bressler, A. Traffic flow on freeway upgrades. Transp. Res. Rec. 2004, 1883, 112–121. [Google Scholar] [CrossRef]
- Sun, J.; Li, T.; Yu, M.; Zhang, H.M. Exploring the congestion pattern at long-queued tunnel sag and increasing the efficiency by control. IEEE Trans. Intell. Transp. Syst. 2018, 19, 3765–3774. [Google Scholar] [CrossRef]
- Bekiaris-Liberis, N.; Roncoli, C.; Papageorgiou, M. Highway traffic state estimation with mixed connected and conventional vehicles. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3484–3497. [Google Scholar] [CrossRef]
- Shiomi, Y.; Yoshii, T.; Kitamura, R. Platoon-based traffic flow model for estimating breakdown probability at single-lane expressway bottlenecks. Transp. Res. Part B 2011, 45, 1314–1330. [Google Scholar] [CrossRef]
- Jin, C.J.; Wang, W.; Jiang, R.; Zhang, H.M.; Wang, H. Spontaneous phase transition from free flow to synchronized flow in traffic on a single-lane highway. Phys. Rev. E 2013, 87, 012815. [Google Scholar] [CrossRef]
- Banks, J.H. Flow breakdown at freeway bottlenecks: Evidence from automated flow analysis. Transp. Res. Rec. 2009, 2099, 14–21. [Google Scholar] [CrossRef]
- Dong, J.; Mahmassani, H.S. Predicting Flow Breakdown Probability and Duration in Stochastic Network Models: Impact on Travel Time Reliability. In Proceedings of the 90th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 1 January 2011. [Google Scholar]
- Sun, J.; Zhang, J.; Zhang, H.M. Investigation of the early-onset breakdown phenomenon at urban expressway bottlenecks in shanghai. Transp. B Transp. Dyn. 2014, 2, 215–228. [Google Scholar] [CrossRef]
- Treiterer, J.; Myers, J. The hysteresis phenomenon in traffic flow. Transp. Traffic Theory 1974, 6, 13–38. [Google Scholar]
- Sugiyama, Y.; Fukui, M.; Kikuchi, M.; Hasebe, K.; Nakayama, A. Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam. New J. Phys. 2008, 10, 033001. [Google Scholar] [CrossRef]
- Treiber, M.; Kesting, A. Traffic Flow Dynamics: Data, Models and Simulation; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-32459-8. [Google Scholar]
- Li, Y.; Zhang, L.; Zheng, H.; He, X.; Peeta, S.; Zheng, T.; Li, Y. Nonlane-discipline-based car-following model for electric vehicles in transportation-cyber-physical systems. IEEE Trans. Intell. Transp. Syst. 2017, 19, 38–47. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Lu, G. Influence of Driving Behaviors on the Stability in Car Following. IEEE Trans. Intell. Transp. Syst. 2018, 20, 1081–1098. [Google Scholar] [CrossRef]
- Kerner, B.S.; Rehborn, H. Experimental properties of complexity in traffic flow. Phys. Rev. E 1996, 53, R4275. [Google Scholar] [CrossRef]
- Kerner, B.S.; Rehborn, H. Experimental features and characteristics of traffic jams. Phys. Rev. E 1996, 53, R1297. [Google Scholar] [CrossRef]
- Kerner, B.S.; Rehborn, H. Experimental properties of phase transitions in traffic flow. Phys. Rev. Lett. 1997, 79, 4030. [Google Scholar] [CrossRef]
- Kerner, B.S. Experimental features of self-organization in traffic flow. Phys. Rev. Lett. 1998, 81, 3797. [Google Scholar] [CrossRef]
- Kerner, B.S. The Physics of Traffic: Empirical Freeway Pattern Features, Engineering Applications, and Theory; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Kerner, B.S. Introduction to Modern Traffic Flow Theory and Control: The Long Road to Three-Phase Traffic Theory; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Kerner, B.S. Control of spatiotemporal congested traffic patterns at highway bottlenecks. IEEE Trans. Intell. Transp. Syst. 2007, 8, 308–320. [Google Scholar] [CrossRef]
- Rehborn, H.; Klenov, S.L.; Palmer, J. An empirical study of common traffic congestion features based on traffic data measured in the USA, the UK, and Germany. Phys. A Stat. Mech. Its Appl. 2011, 390, 4466–4485. [Google Scholar] [CrossRef]
- Yang, B.; Yoon, J.W.; Monterola, C. Microscopic Statistical Characterisation of the Congested Traffic Flow and Some Salient Empirical Features. arXiv 2016, arXiv:1603.04272. [Google Scholar]
- Kouhi Esfahani, R.; Shahbazi, F.; Akbarzadeh, M. Three-phase classification of an uninterrupted traffic flow: A k-means clustering study. Transp. B Transp. Dyn. 2018, 7, 546–558. [Google Scholar] [CrossRef]
- Jiang, R.; Jin, C.J.; Zhang, H.M.; Huang, Y.X.; Tian, J.F.; Wang, W.; Hu, M.-B.; Wang, H.; Jia, B. Experimental and empirical investigations of traffic flow instability. Transp. Res. Part C 2018, 94, 83–98. [Google Scholar] [CrossRef]
- Guan, W.; He, S.Y. phase identification of urban freeway traffic based on statistical properties. J. Transp. Syst. Eng. Inf. Technol. 2007, 7, 42–50. [Google Scholar]
- Kerner, B.S. Experimental features of the emergence of moving jams in free traffic flow. J. Phys. A Math. Gen. 2000, 33, L221–L228. [Google Scholar] [CrossRef]
- Jiang, R.; Hu, M.B.; Zhang, H.M.; Gao, Z.-Y.; Jia, B.; Wu, Q.-S.; Wang, B.; Yang, M. Traffic experiment reveals the nature of car-following. PLoS ONE 2014, 9, e94351. [Google Scholar] [CrossRef]
- Jiang, R.; Hu, M.B.; Zhang, H.M.; Gao, Z.-Y.; Jia, B.; Wu, Q.-S. On some experimental features of car-following behavior and how to model them. Transp. Res. Part B Methodol. 2015, 80, 338–354. [Google Scholar] [CrossRef]
- Tian, J.; Jiang, R.; Jia, B.; Gao, Z.Y.; Ma, S.F. Empirical analysis and simulation of the concave growth pattern of traffic oscillations. Transp. Res. Part B Methodol. 2016, 93, 338–354. [Google Scholar] [CrossRef]
- Treiber, M.; Kesting, A. The Intelligent Driver Model with stochasticity—New insights into traffic flow oscillations. Transp. Res. Part B Methodol. 2018, 117, 613–623. [Google Scholar] [CrossRef]
- Laval, J.A.; Toth, C.S.; Zhou, Y. A parsimonious model for the formation of oscillations in car-following models. Transp. Res. Part B Methodol. 2014, 70, 228–238. [Google Scholar] [CrossRef]
- Xu, T.; Laval, J. Analysis of a Two-Regime Stochastic Car-Following Model for Explaining Capacity Drop and Oscillation Instabilities. Transp. Res. Rec. 2019, 2673, 610–619. [Google Scholar] [CrossRef]
- Karimi, M.; Roncoli, C.; Alecsandru, C.; Papageorgiou, M. Cooperative merging control via trajectory optimization in mixed vehicular traffic. Transp. Res. Part C Emerg. Technol. 2020, 116, 102663. [Google Scholar] [CrossRef]
- Dijker, T.; Bovy, P.; Vermijs, R. Car-following under congested conditions: Empirical findings. Transp. Res. Rec. 1998, 1644, 20–28. [Google Scholar] [CrossRef]
- Wiedemann, R. Simulation des StraBenverkehrsflusses. In Proceedings of the Schriftenreihe des tnstituts fir Verkehrswesen der Universitiit, Karlsruhe, Germany; 1974. [Google Scholar]
- Wiedemann, R.; Schnittger, S. Einfluß von Sicherheitsanforderungen auf die Leistungsfähigkeit im Straßenverkehr (Richtungsfahrbahnen). Forschung Straßenbau und Straßenverkehrstechnik, Heft 586; Bad Godesberg Bundesminister für Verkehr, Abt. Strassenbau: Bonn, Germany, 1990. [Google Scholar]
- Fritzsche, H.T. A model for traffic simulation. Traffic Eng. Control. 1994, 35, 317–321. [Google Scholar]
- Ben-Akiva, M.; Koutsopoulos, H.N.; Toledo, T.; Yang, Q.; Choudhury, C.F.; Antoniou, C.; Balakrishna, R. Traffic simulation with MITSIMLab. In Fundamentals of Traffic Simulation; Springer: New York, NY, USA, 2010; pp. 233–268. [Google Scholar]
- Pan, Y.A.; Guo, J.; Chen, Y.; Cheng, Q.; Li, W.; Liu, Y. A fundamental diagram based hybrid framework for traffic flow estimation and prediction by combining a Markovian model with deep learning. Expert Syst. Appl. 2024, 238, 122219. [Google Scholar] [CrossRef]
- Tadaki, S.; Kikuchi, M.; Fukui, M.; Nakayama, A.; Nishinari, K.; Shibata, A.; Sugiyama, Y.; Yosida, T.; Yukawa, S. Phase transition in traffic jam experiment on a circuit. New J. Phys. 2013, 15, 103034. [Google Scholar] [CrossRef]
- Chen, D.; Laval, J.; Zheng, Z.; Ahn, S. A behavioral car-following model that captures traffic oscillations. Transp. Res. Part B Methodol. 2012, 46, 744–761. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, R.; Li, L.; Lin, Y.; Zheng, X.; Wang, F.Y. Capturing car-following behaviors by deep learning. IEEE Trans. Intell. Transp. Syst. 2018, 19, 910–920. [Google Scholar] [CrossRef]
- Yang, D.; Zhu, L.; Liu, Y.; Wu, D.; Ran, B. A Novel Car-Following Control Model Combining Machine Learning and Kinematics Models for Automated Vehicles. IEEE Trans. Intell. Transp. Syst. 2018, 20, 1991–2000. [Google Scholar] [CrossRef]
- Qiu, X.P.; Liu, Y.L.; Ma, L.N.; Yang, D. A Lane Change Model Based on Bayesian Networks. J. Transp. Syst. Eng. Inf. Technol. 2015, 15, 67–73. [Google Scholar]
- Ding, D.D.; Sun, L.; Chen, S. A Car-following Model Coupling Machine Learning and Dynamic. J. Transp. Syst. Eng. Inf. Technol. 2017, 17, 33–39. [Google Scholar]
Symbol | Definition |
---|---|
dn | Actual space gap of car n |
dsa | The minimum safe space gap |
dn,de | Desired space gap |
dfr | Space gap boundary between free driving state and car-following state |
s0 | Bumper-to-bumper distance in jam |
vc | Critical speed of traffic breakdown occurs |
vmax | The maximum speed of vehicles |
Δvn | Speed difference |
T | Time gap between two vehicles |
Tsa | Safe driving time gap |
Tfr | Free driving time gap |
Tn,de | Desired time gap |
xn | Location of the following car |
xn+1 | Location of the leading car |
a | The maximum acceleration |
b | The comfortable deceleration |
bmax | The maximum comfortable deceleration |
Lcar | Vehicle length |
λ1 | Spacing determined component for driver |
λ2 | Speed difference determined component for driver |
Parameter | a | bmax | s0 | vmax | δ | γ | vc | Tsa | Tfr |
---|---|---|---|---|---|---|---|---|---|
Value | 0.8 | 2.5 | 2.0 | 33.33 | 0.2 | 0.06 | 10 | 0.5 | 2.0 |
Unit | m/s2 | m/s2 | m | m/s | s | \ | m/s | s | s |
Parameter | a | bmax | s0 | vmax | δ | γ | vc | Tsa | Tfr |
---|---|---|---|---|---|---|---|---|---|
Value | 0.8 | 2.5 | 2.0 | 33.33 | 0.2 | 0.06 | 15 | 0.5 | 1.9 |
Unit | m/s2 | m/s2 | m | m/s | s | \ | m/s | s | s |
Calibration | Validation | ||||
---|---|---|---|---|---|
vleading (units: m/s) | 1.94 | 8.33 | 13.89 | 4.17 | 11.11 |
RMSPE | 0.22 | 0.14 | 0.20 | 0.24 | 0.10 |
Average RMSPE | 0.19 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wang, Z.; Liu, Y. A Multi-Regime Car-Following Model Capturing Traffic Breakdown. Electronics 2025, 14, 304. https://doi.org/10.3390/electronics14020304
Li Z, Wang Z, Liu Y. A Multi-Regime Car-Following Model Capturing Traffic Breakdown. Electronics. 2025; 14(2):304. https://doi.org/10.3390/electronics14020304
Chicago/Turabian StyleLi, Zhenhua, Zuojun Wang, and Yanyue Liu. 2025. "A Multi-Regime Car-Following Model Capturing Traffic Breakdown" Electronics 14, no. 2: 304. https://doi.org/10.3390/electronics14020304
APA StyleLi, Z., Wang, Z., & Liu, Y. (2025). A Multi-Regime Car-Following Model Capturing Traffic Breakdown. Electronics, 14(2), 304. https://doi.org/10.3390/electronics14020304