Improved Sage–Husa Unscented Kalman Filter for Harmonic State Estimation in Distribution Grid
Abstract
:1. Introduction
- (1)
- Frequency deviation is an inevitable source of interference in HSE. This paper designs a nonlinear harmonic model and employs the UKF to achieve accurate HSE despite the presence of frequency deviations, leveraging the capabilities of the nonlinear model.
- (2)
- Time-varying noise is another factor that impairs the accuracy of HSE. This paper integrates a Sage–Husa noise estimator into the UKF to minimize the noise influence on HSE.
- (3)
- A novel strategy is introduced to enhance the convergence of the UKF, thereby improving the dynamic performance of HSE.
2. The Proposed Method
2.1. Harmonic Model
2.2. UKF for HSE
- (1)
- Initialization, k = 0, and are
- (2)
- Time Update
- (3)
- Prediction
- (4)
- Measurement Update
2.3. Sage–Husa Noise Estimation
- (1)
- The covariance of system noise is evaluated as
- (2)
- The covariance of measurement noise is estimated as
2.4. Improved Sage–Husa Noise Estimation
2.5. Harmonic State Estimation by Improved SHUKF (ISHUKF)
- (1)
- Sample the power signals.
- (2)
- Use the UKF to process the power signals and estimate the harmonics state by the state variable vector x according to Equation (21).
- (3)
- Use Sage–Husa noise to estimate covariances of system noise Q and measurement noise R, respectively, for the UKF iteration.
- (4)
- Monitor the Q, and use Equation (27) to make sure that the is a positive semidefinite.
- (5)
- Refresh the Q and R, then move forward to Step (2).
- (6)
- Stop the whole process if the HSE is over.
Pseudocode of the new method |
1. Build the nonlinear filter model for the interested harmonics (Equation (6)). 2. Initialize the parameters: r, q, P, , , and b. 3. Obtain power signal . 4. Generate sigma points for the UKF estimation (Equations (7) and (8)). 5. Perform UKF to estimate (Equation (7) to Equation (21)). 6. Monitor the noise by improved Sage–Husa estimator (Equation (23) to Equation (25)). 7. Return to 5 to modify the Q and R of the UKF. |
3. Simulation Analysis
3.1. Harmonic State Estimation in Distribution Grid Model
3.2. Harmonic State Estimation with Dynamic Noise
4. Experiment
4.1. HSE for Single Switch Open-Circuited Harmonics
4.2. HSE for Multiple Switch Open-Circuited Harmonics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carta, D.; Muscas, C.; Pegoraro, P.A.; Solinas, A.V.; Sulis, S. Compressive sensing-based harmonic sources identification in smart grids. IEEE Trans Instrum. Meas. 2021, 70, 9000810. [Google Scholar] [CrossRef]
- Kumar, D.; Zare, F. Harmonic analysis of grid connected power electronic systems in low voltage distribution networks. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 70–79. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, H.; Song, X.; Zhang, H.; Zhang, Y.; Chen, J.; Liu, H. Analysis of Influence of Grid-Following and Grid-Forming Static Var Generators on High-Frequency Resonance in Doubly Fed Induction Generator-Based Wind Farms. Electronics 2024, 13, 3879. [Google Scholar] [CrossRef]
- Safarishaal, M.; Hemmati, R.; Saeed Kandezy, R.; Jiang, J.N.; Lin, C.; Wu, D. Nonlinear Impact of Topological Configuration of Coupled Inverter-Based Resources on Interaction Harmonics Levels of Power Flow. Energies 2024, 17, 2512. [Google Scholar] [CrossRef]
- Jin, G.; Li, F.; Yin, C.; Liu, J.; Wang, T. Analysis of Small-Disturbance Stability of Onshore Wind Power All-DC Power Generation System and Identification of Leading Factors. Electronics 2024, 13, 8. [Google Scholar] [CrossRef]
- Ahmadi-Gorjayi, F.; Mohsenian-Rad, H. A physics-aware MIQP approach to harmonic state estimation in low-observable power distribution systems using harmonic phasor measurement units. IEEE Trans. Smart Grid 2023, 14, 2111–2124. [Google Scholar] [CrossRef]
- Li, J.; Cao, Y.; Zhang, X.; Lin, H.; Dai, H.; Xu, Y. An accurate harmonic parameter estimation method based on Slepian and Nuttall mutual convolution window. Measurement 2021, 174, 109027. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, W.; Xie, X.; Zhao, D.; Huang, S. Harmonic phasor estimation based on frequency-domain sampling theorem. IEEE Trans. Instrum. Meas. 2021, 70, 9001210. [Google Scholar] [CrossRef]
- Mack, P.; de Koster, M.; Lehnen, P.; Waffenschmidt, E.; Stadler, I. Power Quality State Estimation for Distribution Grids Based on Physics-Aware Neural Networks—Harmonic State Estimation. Energies 2024, 17, 5452. [Google Scholar] [CrossRef]
- Barros, J.; Diego, R.I. On the use of the Hanning window for harmonic analysis in the standard framework. IEEE Trans. Power Deliv. 2006, 21, 538–539. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, W.; Wang, F.; Wang, Q.; Huang, S. Enhanced Interpolated Dynamic DFT Synchrophasor Estimator Considering Second Harmonic Interferences. Sensors 2018, 18, 2748. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.B.; Häselbarth, S.; Yanchenko, S.; Oliveira, A.M.; Strunz, K. Wavelet-based harmonic magnitude measurement in the presence of interharmonics. IEEE Trans. Power Deliv. 2023, 38, 2072–2087. [Google Scholar] [CrossRef]
- Ildarabadi, R.; Zadehbagheri, M. New Technology and Method for Monitoring the Status of Power Systems to Improve Power Quality—A Case Study. Processes 2023, 11, 2468. [Google Scholar] [CrossRef]
- Chang, G.W.; Lin, Y.-L.; Liu, Y.-J.; Sun, G.H.; Yu, J.T. A Hybrid Approach for Time-Varying Harmonic and Interharmonic Detection Using Synchrosqueezing Wavelet Transform. Appl. Sci. 2021, 11, 752. [Google Scholar] [CrossRef]
- Afroni, M.J.; Sutanto, D.; Stirling, D. Analysis of Nonstationary Power-Quality Waveforms Using Iterative Hilbert Huang Transform and SAX Algorithm. IEEE Trans. Power Deliv. 2013, 28, 2134–2144. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Luo, S.; Xu, X. Research on Power Quality Disturbance Detection Method Based on Improved Ensemble Empirical Mode Decomposition. Electronics 2020, 9, 585. [Google Scholar] [CrossRef]
- Zabihi, A.; Aghdasi, F.; Ellouzi, C.; Singh, N.K.; Jha, R.; Shen, C. Non-Contact Wind Turbine Blade Crack Detection Using Laser Doppler Vibrometers. Energies 2024, 17, 2165. [Google Scholar] [CrossRef]
- IEC 61000-4-7; Electromagnetic Compatibility (EMC)—Part 4–7: Testing and Measurement Techniques. IEC: Geneva, Switzerland, 2009.
- Shu, Q.; Fan, Y.; Xu, F.; Wang, C.; He, J. A harmonic impedance estimation method based on AR model and Burg algorithm. Electr. Power Syst. Res. 2022, 202, 107568. [Google Scholar] [CrossRef]
- Teng, J.-H.; Leou, R.-C.; Chang, C.-Y.; Chan, S.-Y. Harmonic Current Predictors for Wind Turbines. Energies 2013, 6, 1314–1328. [Google Scholar] [CrossRef]
- Babaei, Z.; Samet, H.; Jalil, M. An innovative approach considering active power and harmonics for modeling the electric arc furnace along with analyzing time-varying coefficients based on ARMA models. Int. J. Electr. Power Energy Syst. 2023, 153, 109377. [Google Scholar] [CrossRef]
- Katz, R.; Diab, N.; Batenkov, D. On the accuracy of Prony’s method for recovery of exponential sums with closely spaced exponents. Appl. Comput. Harmon. Anal. 2024, 73, 101687. [Google Scholar] [CrossRef]
- Gong, J.; Liu, S. A Harmonic and Interharmonic Detection Method for Power Systems Based on Enhanced SVD and the Prony Algorithm. Appl. Sci. 2023, 13, 7558. [Google Scholar] [CrossRef]
- Jain, S.K.; Singh, S.N. Exact model order ESPRIT technique for harmonics and interharmonics estimation. IEEE Trans. Instrum. Meas. 2012, 61, 1915–1923. [Google Scholar] [CrossRef]
- Bracale, A.; Carpinelli, G.; Gu, I.; Bollen, M. A new joint sliding-window ESPRIT and DFT scheme for waveform distortion assessment in power systems. Electr. Power Syst. Res. 2012, 88, 112–120. [Google Scholar] [CrossRef]
- Santos, E.; Khosravy, M.; Lima, M.; Cerqueira, A.; Duque, C. ESPRIT associated with filter bank for power-line harmonics, sub-harmonics and inter-harmonics parameters estimation. Int. J. Electr. Power Energy Syst. 2020, 118, 105731. [Google Scholar] [CrossRef]
- Marei, M.I.; El-Saadany, E.F.; Salama, M.M.A. A processing unit for symmetrical components and harmonics estimation based on a new adaptive linear combiner structure. IEEE Trans. Power Deliv. 2024, 19, 1245–1252. [Google Scholar] [CrossRef]
- Chang, G.W.; Chen, C.-I.; Liang, Q.W. A two-stage ADALINE for harmonics and interharmonics measurement. IEEE Trans. Ind. Electron. 2009, 56, 2220–2228. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, C.; Zhang, Y.; Zhang, J. A new adaptive square-root unscented Kalman filter for nonlinear systems with additive noise. Int. J. Aerosp. Eng. 2015, 2015, 381478. [Google Scholar] [CrossRef]
- Janpong, S.; Areerak, K.; Areerak, K. Harmonic Detection for Shunt Active Power Filter Using ADALINE Neural Network. Energies 2021, 14, 4351. [Google Scholar] [CrossRef]
- Asl, R.M.; Hagh, Y.S.; Simani, S.; Handroos, H. Adaptive square-root unscented Kalman filter: An experimental study of hydraulic actuator state estimation. Mech. Syst. Signal Process. 2019, 132, 670–691. [Google Scholar]
- Ouyang, Q.; Ma, R.; Wu, Z.; Xu, G.; Wang, Z. Adaptive square-root unscented Kalman filter-based state-of-charge estimation for lithium-ion batteries with model parameter online Identification. Energies 2020, 13, 4968. [Google Scholar] [CrossRef]
- Qi, J.; Sun, K.; Wang, J.; Liu, H. Dynamic state estimation for multi-machine power system by unscented Kalman filter with enhanced numerical stability. IEEE Trans. Smart Grid 2018, 9, 1184–1196. [Google Scholar] [CrossRef]
- Du, S.; Sun, W.; Wang, Y.; Wang, M.; Zhang, H. Harmonic Injection Control of Permanent Magnet Synchronous Motor Based on Fading Memory Kalman Filtering. Electronics 2023, 12, 4890. [Google Scholar] [CrossRef]
- Julier, S.J.; Uhlmann, J.K. Unscented filtering and nonlinear estimation. Proc. IEEE 2004, 92, 401–422. [Google Scholar] [CrossRef]
- Zhang, Y.; Nie, Z.; Wang, Z.; Zhang, G.; Shan, X. Integration of High-Rate GNSS and Strong Motion Record Based on Sage–Husa Kalman Filter with Adaptive Estimation of Strong Motion Acceleration Noise Uncertainty. Remote Sens. 2024, 16, 2000. [Google Scholar] [CrossRef]
- Fan, Y.; Qiao, S.; Wang, G.; Zhang, H. An Improved Sage-Husa Variational Robust Adaptive Kalman Filter With Uncertain Noise Covariances. IEEE Sens. J. 2024, 24, 28921–28930. [Google Scholar] [CrossRef]
- Pak, L.F.; Dinavahi, V.; Chang, G.; Steurer, M.; Ribeiro, P.F. Real-Time Digital Time-Varying Harmonic Modeling and Simulation Techniques IEEE Task Force on Harmonics Modeling and Simulation. IEEE Trans. Power Delivery 2007, 22, 1218–1227. [Google Scholar] [CrossRef]
- Teng, J.H. A direct approach for distribution system load flow solutions. IEEE Trans. Power Deliv. 2003, 18, 882–887. [Google Scholar] [CrossRef]
- He, S.; Tian, W.; Zhu, R.; Zhang, Y.; Mao, S. Electrical Signature Analysis for Open-Circuit Faults Detection of Inverter With Various Disturbances in Distribution Grid. IEEE Trans. Ind. Inform. 2023, 19, 8351–8361. [Google Scholar] [CrossRef]
UKF | Sage–Husa | |||||
---|---|---|---|---|---|---|
r | q | P | b | |||
0.01 | 0.01 | 0 | 0.001 | 2 | 0 | 0.98 |
Harmonic Order | Amplitude/p.u. | Phase/° |
---|---|---|
1 | 1.0000 | 0.00 |
5 | 0.1824 | −55.68 |
7 | 0.1190 | −84.11 |
11 | 0.0573 | −143.56 |
13 | 0.0401 | −175.58 |
Harmonic Order | Harmonic Parameters | Methods | |||||
---|---|---|---|---|---|---|---|
ADALINE | KF | ISHUKF | |||||
RMSE | STD | RMSE | STD | RMSE | STD | ||
5th | Amplitude (p.u.) | 0.0096 | 0.0084 | 0.0091 | 0.0087 | 0.0073 | 0.0072 |
Phase (degree) | 2.717 | 2.672 | 2.697 | 2.681 | 2.189 | 2.220 | |
7th | Amplitude (p.u.) | 0.0078 | 0.0076 | 0.0073 | 0.0077 | 0.0053 | 0.0053 |
Phase (degree) | 4.465 | 4.064 | 4.173 | 4.380 | 3.358 | 3.390 | |
11th | Amplitude (p.u.) | 0.0067 | 0.0066 | 0.0066 | 0.0069 | 0.0038 | 0.0039 |
Phase (degree) | 10.767 | 7.582 | 9.42 | 7.749 | 6.001 | 6.013 | |
13th | Amplitude (p.u.) | 0.0066 | 0.0067 | 0.0066 | 0.0066 | 0.0034 | 0.0035 |
Phase (degree) | 10.381 | 9.588 | 10.885 | 10.365 | 4.854 | 4.064 |
System frequency (Hz) | 50 ± 0.5 |
Injected current (A) | 1 to 7.5 |
Connected grid line voltage (V) | 380 |
Sampling rate (Hz) | 4000 |
Interested harmonic order | Second and third |
Harmonic Order | ADALINE | KF | ISHUKF |
---|---|---|---|
Second | 0.0046 | 0.0056 | 0.0039 |
Third | 0.0041 | 0.0046 | 0.0035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.; Sun, J. Improved Sage–Husa Unscented Kalman Filter for Harmonic State Estimation in Distribution Grid. Electronics 2025, 14, 376. https://doi.org/10.3390/electronics14020376
Yu P, Sun J. Improved Sage–Husa Unscented Kalman Filter for Harmonic State Estimation in Distribution Grid. Electronics. 2025; 14(2):376. https://doi.org/10.3390/electronics14020376
Chicago/Turabian StyleYu, Peixuan, and Jianjun Sun. 2025. "Improved Sage–Husa Unscented Kalman Filter for Harmonic State Estimation in Distribution Grid" Electronics 14, no. 2: 376. https://doi.org/10.3390/electronics14020376
APA StyleYu, P., & Sun, J. (2025). Improved Sage–Husa Unscented Kalman Filter for Harmonic State Estimation in Distribution Grid. Electronics, 14(2), 376. https://doi.org/10.3390/electronics14020376