A Sub-6GHz Two-Port Crescent MIMO Array Antenna for 5G Applications
Abstract
:1. Introduction
- The proposed MIMO array antenna was designed based on designing the unit cell antenna of a hollow regular circular stub patch antenna in the shape of a crescent and a rectangular defective shape at the upper part of the patch using Microwave Studio CST for simulation.
- A 1 × 2 array and a 1 × 4 array were designed based on a unit cell and lead to high gain, and to achieve wideband beam width, the proposed MIMO array antenna was designed to cover 3.5 GHz and 5.8 GHz for WiMAX 5G systems.
- A MIMO array antenna was fabricated and measured in the Microstrip Circuits Department Laboratories at the Electronics Research Institute (ERI), which nearly matched the simulated results.
- The MIMO array antenna presented a fractional frequency band of 3.01 GHz to 6.51 GHz, which was noticeably more meticulous than in previous research. In the interim, the efficiency went to 71.5%, and a high gain of 7.84 dBi and 7.66 dBi was obtained at 5.8 GHz and 3.5 GHz, respectively. Effective measured MIMO parameters were CCL tending to 0.2 bit/s/Hz, the ECC yielding 0.02, a MEG of less than −6 dB over the operating band, and a TARC of less than −10 dB.
- The fabricated MIMO array antenna was experimentally tested using the 5G system built on the OAI platform, which operates at sub-6 GHz, confirming its operational effectiveness in 5G applications over the MIMO dipole antenna.
2. The Antenna Design and Configuration
2.1. Design of the Single-Patch Radiating Antenna Element
2.2. Design of Antenna Array Arrangement
2.3. Design of MIMO Array Antenna Arrangement
3. Measurement Results Discussion
3.1. Reflection and Transmission Coefficient Results
3.2. Radiation Pattern and Realized Gain Results
3.3. MIMO Antenna Parameter Results
3.3.1. The Envelope Correlation Coefficients
3.3.2. The Diversity Gain
3.3.3. The Channel Capacity Loss
3.3.4. The Mean Effective Gain
3.3.5. Total Active Reflection Coefficient
4. 5G Application Implementation Based on Open Air Interface Platform
4.1. 5G Indoor System Implementation Configuration
4.2. 5G System Performance Evaluation
4.2.1. The Received Signal Strength Indicator
4.2.2. Signal-to-Interference-Plus-Noise Ratio
4.2.3. Power Headroom Report
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osseiran, A.; Boccardi, F.; Braun, V.; Kusume, K.; Marsch, P.; Maternia, M.; Queseth, O.; Schellmann, M.; Schotten, H.; Taoka, H.; et al. Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Commun. Mag. 2014, 52, 26–35. [Google Scholar] [CrossRef]
- Rai, A.K.; Jaiswal, R.K.; Kumari, K.; Srivastava, K.V.; Sim, C.-Y. Wideband Monopole Eight-Element MIMO Antenna for 5G Mobile Terminal. IEEE Access 2022, 11, 689–696. [Google Scholar] [CrossRef]
- Ren, A.; Yang, L.; Huang, Z.; Yu, H.; Chen, Q.; Liu, Y. High-isolation eight-element MIMO array for unbroken metal-rimmed smartphone applications. Int. J. RF Microw. Comput.-Aided Eng. 2022, 32, e23404. [Google Scholar] [CrossRef]
- El Halaoui, M.; Canale, L.; Asselman, A.; Zissis, G. An optically transparent antenna integrated into OLED light source for 5G applications. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 9–12 June 2020. [Google Scholar]
- Fakharian, M.M. A low-profile compact UWB antenna array for sub-6 GHz MIMO applications in 5G metal-frame smartphones. Int. J. RF Microw. Comput.-Aided Eng. 2022, 32, e23320. [Google Scholar] [CrossRef]
- Qu, L.; Piao, H. A Dual-Port Single-Dipole MIMO Antenna Pair Based on Selective Modal Excitation for 5G Metal-Rimmed Terminals. IEEE Access 2022, 10, 100208–100214. [Google Scholar] [CrossRef]
- Patel, A.; Vala, A.; Desai, A.; Elfergani, I.; Mewada, H.; Mahant, K.; Zebiri, C.; Chauhan, D.; Rodriguez, J. Inverted-L Shaped Wideband MIMO Antenna for Millimeter-Wave 5G Applications. Electronics 2022, 11, 1387. [Google Scholar] [CrossRef]
- Ha, L.T.C.; Ta, S.X.; Quyen, N.X.; Kiem, N.K.; Chien, D.-N. High-isolation wide-beam dual-polarized antenna utilizing symmetrical feeding. Prog. Electromagn. Res. M 2022, 111, 53–63. [Google Scholar] [CrossRef]
- Saeidi, T.; Karamzadeh, S. High gain couple feed multiband wearable antenna for 5G and sub-6 GHz communications. Int. J. RF Microw. Comput. Eng. 2022, 32, e23480. [Google Scholar] [CrossRef]
- Althuwayb, A.A.; Alibakhshikenari, M.; Virdee, B.S.; Rashid, N.; Kaaniche, K.; Ben Atitallah, A.; Armghan, A.; Elhamrawy, O.I.; See, C.H.; Falcone, F. Metasurface-Inspired Flexible Wearable MIMO Antenna Array for Wireless Body Area Network Applications and Biomedical Telemetry Devices. IEEE Access 2022, 11, 1039–1056. [Google Scholar] [CrossRef]
- Kanagasabai, M.; Shanmuganathan, S.; Alsath, M.G.N.; Palaniswamy, S.K. A Novel Low-Profile 5G MIMO Antenna for Vehicular Communication. Int. J. Antennas Propag. 2022, 2022, 9431221. [Google Scholar] [CrossRef]
- Yousef, B.M.; Ameen, A.M.; Desai, A.; Hsu, H.-T.; Dhasarathan, V.; Ibrahim, A.A. Defected ground structure-based wideband circularly polarized 4-port MIMO antenna for future Wi-Fi 6E applications. AEU-Int. J. Electron. Commun. 2023, 170, 154815. [Google Scholar] [CrossRef]
- Fan, J.; Lin, J.; Cai, J.; Qin, F. Ultra-wideband circularly polarized cavity-backed crossed-dipole antenna. Sci. Rep. 2022, 12, 4569. [Google Scholar] [CrossRef] [PubMed]
- Ameen, A.M. Design of a multiband multi-slot monopole antenna for cellular mobile communications. Int. J. Microw. Opt. Technol. 2019, 14, 320–326. [Google Scholar]
- Govindan, T.; Palaniswamy, S.K.; Kanagasabai, M.; Kumar, S.; Marey, M.; Mostafa, H. Design and Analysis of a Flexible Smart Apparel MIMO Antenna for Bio-Healthcare Applications. Micromachines 2022, 13, 1919. [Google Scholar] [CrossRef] [PubMed]
- Rekha, S.; Let, G.S. Design and SAR Analysis of Wearable UWB MIMO Antenna with Enhanced Isolation Using a Parasitic Structure. Iran. J. Sci. Technol. Trans. Electr. Eng. 2022, 46, 291–301. [Google Scholar] [CrossRef]
- Elboushi, A.; Ameen, A.M. Analysis and Design of an Oversized Slotted Patch Antenna for 5G Applications. Int. J. Microw. Opt. Technol. 2022, 17, 10–15. [Google Scholar]
- Saeidi, T.; Karamzadeh, S. High gain wide band flexible leaky wave MIMO antenna for AIP applications. In Proceedings of the 2022 Workshop on Microwave Theory and Techniques in Wireless Communications (MTTW), Riga, Latvia, 5–7 October 2022. [Google Scholar]
- Yousef, B.M.; Ameen, A.M.; Alanazi, M.D.; Rajagopal, M.; Ibrahim, A.A. A Wide-Band Antenna with Circular Polarization Utilizing a U-Shaped Radiator and Parasitic Strip for Wireless Communications. Micromachines 2023, 14, 1308. [Google Scholar] [CrossRef] [PubMed]
- Green, R.B.; Guzman, M.; Izyumskaya, N.; Ullah, B.; Hia, S.; Pitchford, J.; Timsina, R.; Avrutin, V.; Ozgur, U.; Morkoc, H.; et al. Optically Transparent Antennas and Filters: A Smart City Concept to Alleviate Infrastructure and Network Capacity Challenges. IEEE Antennas Propag. Mag. 2019, 61, 37–47. [Google Scholar] [CrossRef]
- Khalifa, M.O.H. Cellular 5G and V2X Antennas Design for Automotive Applications. Ph.D. Thesis, Oakland University, Rochester, MI, USA, 2022. [Google Scholar]
- Yacoub, A.; Khalifa, M.; Aloi, D.N. Wide bandwidth low profile pifa antenna for vehicular sub-6 ghz 5g and v2x wireless systems. Prog. Electromagn. Res. C 2021, 109, 257–273. [Google Scholar] [CrossRef]
- Ibrahim, A.S.; Yacoub, A.M.; Aloi, D.N. A 3-Dimensional Multiband Antenna for Vehicular 5G Sub-6 GHz/GNSS/V2X Applications. Int. J. Antennas Propag. 2022, 2022, 5609110. [Google Scholar] [CrossRef]
- Che, J.-K.; Chen, C.-C.; Locke, J.F. A Compact Four-Channel MIMO 5G Sub-6 GHz/LTE/WLAN/V2X Antenna Design for Modern Vehicles. IEEE Trans. Antennas Propag. 2021, 69, 7290–7297. [Google Scholar] [CrossRef]
- Alharbi, A.G.; Kulkarni, J.; Desai, A.; Sim, C.-Y.-D.; Poddar, A. A multi-slot two-antenna MIMO with high isolation for sub-6 GHz 5G/IEEE802. 11ac/ax/C-band/X-band wireless and satellite applications. Electronics 2022, 11, 473. [Google Scholar] [CrossRef]
- Hampton, J.R.; Cruz, M.A.; Merheb, N.M.; Hammons, A.R.; Paunil, D.E.; Ouyang, F. MIMO channel measurements for urban military applications. In Proceedings of the MILCOM 2008—2008 IEEE Military Communications Conference (MILCOM), San Diego, CA, USA, 16–19 November 2008; pp. 1–7. [Google Scholar]
- Sharawi, M.S. Printed MIMO antenna systems: Performance metrics, implementations and challenges. In Forum for Electromagnetic Research Methods and Application Technologies (FERMAT); University of Central Florida: Orlando, FL, USA, 2014; Volume 1. [Google Scholar]
- Padmanathan, S.; Al-Hadi, A.A.; Elshirkasi, A.M.; Al-Bawri, S.S.; Islam, M.T.; Sabapathy, T.; Jusoh, M.; Akkaraekthalin, P.; Soh, P.J. Compact Multiband Reconfigurable MIMO Antenna for Sub- 6GHz 5G Mobile Terminal. IEEE Access 2022, 10, 60241–60252. [Google Scholar] [CrossRef]
- Pahadsingh, S.; Sahu, S. Four port MIMO integrated antenna system with DRA for cognitive radio platforms. AEU-Int. J. Electron. Commun. 2018, 92, 98–110. [Google Scholar] [CrossRef]
- Hong, J.-K. Performance Analysis of Dual-Polarized Massive MIMO System with Human-Care IoT Devices for Cellular Networks. J. Sensors 2018, 2018, 3604520. [Google Scholar] [CrossRef]
- Jolani, F.; Yu, Y.; Chen, Z. A novel broadband omnidirectional dual polarized MIMO antenna for 4G LTE applications. In Proceedings of the 2014 IEEE International Wireless Symposium (IWS), Xi’an, China, 24–26 March 2014; pp. 1–4. [Google Scholar]
- Nirmal, P.; Nandgaonka, A.B.; Nalbalwa, S.L. A MIMO antenna: Study on reducing mutual coupling and improving isolation. In Proceedings of the 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bengaluru, India, 20–21 May 2016; pp. 1736–1740. [Google Scholar]
- Lin, H.; Chen, Q.; Ji, Y.; Yang, X.; Wang, J.; Ge, L. Weak-field-based self-decoupling patch antennas. IEEE Trans. Antennas Propag. 2020, 68, 4208–4217. [Google Scholar] [CrossRef]
- Sun, L.; Li, Y.; Zhang, Z.; Wang, H. Self-Decoupled MIMO Antenna Pair With Shared Radiator for 5G Smartphones. IEEE Trans. Antennas Propag. 2020, 68, 3423–3432. [Google Scholar] [CrossRef]
- Sun, L.; Li, Y.; Zhang, Z.; Wang, H. Antenna Decoupling by Common and Differential Modes Cancellation. IEEE Trans. Antennas Propag. 2020, 69, 672–682. [Google Scholar] [CrossRef]
- Awan, W.A.; Islam, T.; NAlsunaydih, F.; Alsaleem, F.; Alhassoonc, K. Dual-band MIMO antenna with low mutual coupling for 2.4/5.8 GHz communication and wearable technologies. PLoS ONE 2024, 19, e0301924. [Google Scholar]
- Bazzi, A.; Slock, D.T.; Meilhac, L. On mutual coupling for ULAs: Estimating AoAs in the presence of more coupling parameters. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 9 March 2017; pp. 3361–3365. [Google Scholar]
- Nadeem, Q.-U.A.; Kammoun, A.; Debbah, M.; Alouini, M.-S. Design of 5G Full Dimension Massive MIMO Systems. IEEE Trans. Commun. 2018, 66, 726–740. [Google Scholar] [CrossRef]
- Li, Y.; Luo, Y.; Yang, G. 12-port 5G massive MIMO antenna array in the sub-6GHz mobile handset for LTE bands 42/43/46 applications. IEEE Access 2017, 6, 344–354. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, J. A Circularly Polarized Octagon-Star-Shaped Microstrip Patch Antenna With Conical Radiation Pattern. IEEE Trans. Antennas Propag. 2018, 66, 2073–2078. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, L.; Liu, N.-W. Pin-Loaded Circularly-Polarized Patch Antennas With Wide 3-dB Axial Ratio Beamwidth. IEEE Trans. Antennas Propag. 2016, 65, 521–528. [Google Scholar] [CrossRef]
- Fang, X.; Wen, G.; Inserra, D.; Huang, Y.; Li, Y. Compact wideband CPW-fed meandered-slot antenna with slotted Y-shaped central element for Wi-Fi, WiMAX, and 5G applications. IEEE Trans. Antennas Propag. 2018, 66, 7395–7399. [Google Scholar] [CrossRef]
- Al-Gburi, A.J.A.; Ibrahim, I.; Zakaria, Z.; Khaleel, A.D. Bandwidth and Gain Enhancement of Ultra-Wideband Monopole Antenna Using MEBG Structure. J. Eng. Appl. Sci. 2019, 14, 3390–3393. [Google Scholar] [CrossRef]
- Alwareth, H.; Ibrahim, I.M.; Zakaria, Z.; Al-Gburi, A.J.A.; Ahmed, S.; Nasser, Z.A. A Wideband High-Gain Microstrip Array Antenna Integrated with Frequency-Selective Surface for Sub-6 GHz 5G Applications. Micromachines 2022, 13, 1215. [Google Scholar] [CrossRef]
- Huang, J.; Dong, G.; Cai, J.; Li, H.; Liu, G. A Quad-Port Dual-Band MIMO Antenna Array for 5G Smartphone Applications. Electronics 2021, 10, 542. [Google Scholar] [CrossRef]
- Li, R.; Mo, Z.; Sun, H.; Sun, X.; Du, G. A Low-Profile and High-isolated MIMO Antenna for 5G Mobile Terminal. Micromachines 2020, 11, 360. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, A.; Liu, H.; Wang, H.; Sim, C.-Y. Eight-Port MIMO Array Using Characteristic Mode Theory for 5G Smartphone Applications. IEEE Access 2019, 7, 45679–45692. [Google Scholar] [CrossRef]
- Khaleel, H.R.; Al-Rizzo, H.M.; Abbosh, A.; Abushamleh, S. Printed Yagi-Uda array for MIMO systems. In Proceedings of the 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), Orlando, FL, USA, 7–13 July 2013. [Google Scholar]
- Jehangir, S.S.; Sharawi, M.S. A novel dual wideband circular quasi-yagi MIMO antenna system with loop excitation. Microw. Opt. Technol. Lett. 2016, 58, 2769–2774. [Google Scholar] [CrossRef]
- Khan, S.; Marwat, S.N.K.; Khan, M.A.; Ahmed, S.; Gohar, N.; Alim, M.E.; Algarni, A.D.; Elmannai, H. A Self-Decoupling Technique to Realize Dense Packing of Antenna Elements in MIMO Arrays for Wideband Sub-6 GHz Communication Systems. Sensors 2023, 23, 654. [Google Scholar] [CrossRef]
- Lin, C.-C.; Cheng, S.-H.; Chen, S.-C.; Wei, C.-S. Compact Sub 6 GHz Dual Band Twelve-Element MIMO Antenna for 5G Metal-Rimmed Smartphone Applications. Micromachines 2023, 14, 1399. [Google Scholar] [CrossRef] [PubMed]
- Ameen, A.M.; Ahmed, M.I.; Elsadek, H.; Anis, W.R. Design of 4-direction MIMO Vivaldi antenna system for vehicles communication in 5G applications. J. Electromagn. Waves Appl. 2022, 36, 2027–2040. [Google Scholar] [CrossRef]
- Alharbi, A.G.; Rafique, U.; Ullah, S.; Khan, S.; Abbas, S.M.; Ali, E.M.; Alibakhshikenari, M.; Dalarsson, M. Novel MIMO Antenna System for Ultra Wideband Applications. Appl. Sci. 2022, 12, 3684. [Google Scholar] [CrossRef]
- Chae, S.H.; Kawk, W.I.; Park, S.-O.; Lee, K. Analysis of mutual coupling in MIMO antenna array by TARC calculation. In Proceedings of the 2006 Asia-Pacific Microwave Conference, Yokohama, Japan, 12–15 December 2006. [Google Scholar]
- Malik, A.; Malik, A.; Ahadi, M.; Kaltenberger, F.; Warnke, K.; Thinh, N.T.; Bouknana, N.; Thienot, C. From Concept to Reality: 5G Positioning with Open-Source Implementation of UL-TDoA in OpenAirInterface. arXiv 2024, arXiv:2409.05217. [Google Scholar]
- Villa, D.; Khan, I.; Kaltenberger, F.; Hedberg, N.; da Silva, R.S.; Maxenti, S.; Bonati, L.; Kelkar, A.; Dick, C.; Baena, E.; et al. X5G: An Open, Programmable, Multi-vendor, End-to-end, Private 5G O-RAN Testbed with NVIDIA ARC and OpenAirInterface. arXiv 2024, arXiv:2406.15935. [Google Scholar]
Antenna Parameter | Dimension (mm) | Antenna Parameter | Dimension (mm) | Antenna Parameter | Dimension (mm) |
---|---|---|---|---|---|
Ls (single) | 46 | Lg | 15 | t | 1.45 |
Ws (single) | 30 | Wc | 7 | Lt | 2 |
Lf | 16.65 | r1 | 12 | Wf | 2.91 |
Lc | 5.113 | r2 | 6 |
Antenna Parameter | Dimension (mm) | Antenna Parameter | Dimension (mm) | Antenna Parameter | Dimension (mm) |
---|---|---|---|---|---|
Ls (1 × 2 array) | 66 | Lg (1 × 2 Array) | 26.33 | W2 | 9.36 |
Ws (1 × 2 array) | 66 | Lp | 16.65 | W3 | 2 |
Wf (1 × 2 array) | 2.91 | W1 | 10 | d | 31.63 |
Antenna Parameter | Dimension (mm) | Antenna Parameter | Dimension (mm) | Antenna Parameter | Dimension (mm) |
---|---|---|---|---|---|
Ls (1 × 4 array) | 66 | Lf (1 × 4 Array) | 11.84 | W5 | 17.91 |
Ws (1 × 4 array) | 140 | Wf | 2.91 | W6 | 10 |
Lg (1 × 4 array) | 34.6 | W4 | 17.91 | L | 12.29 |
Antenna Parameter | Dimension (mm) | Antenna Parameter | Dimension (mm) | Antenna Parameter | Dimension (mm) |
---|---|---|---|---|---|
Ls (MIMO) | 135 | Lg2 | 6.5 | Wg3 | 1 |
Ws (MIMO) | 140 | Wg1 | 1 | ||
Lg1 | 14.7 | Wg2 | 12 |
Ref. No. | Area | Freq. Band | Gain | ECC | Substrate | Target | Technique |
---|---|---|---|---|---|---|---|
44 | 136 × 55 | 2.3 | 12.4 | - | Fr-4 | - | Microstrip array with FSS |
45 | 150 × 75 | 0.2 | 5.1 | 0.01 | Fr-4 | 5G | L-shaped strip |
46 | 150 × 75 | 0.26 | 1.6 | 0.3 | Fr-4 | 5G | M-shaped strip |
47 | 145 × 75 | 0.2 | 4.5 | 0.16 | Fr-4 | 5G | M-shaped strip |
48 | 154 × 154 | 0.3 | 5 | Fr-4 | NM | Printed Yagi–Uda | |
49 | 263 × 263 | 1.1 | 7 | 0.159 | Fr-4 | GSM/UMTS/EDGE | Circular quasi-Yagi |
50 | 80 × 80 | 4 | 3 | 0.016 | Fr-4 | 5G/Sub-6GHz | Self-decoupling |
51 | 165 × 85 | 0.2 | - | 0.38 | Fr-4 | 5G/Sub-6GHz | Microstrip MIMO |
This work | 140 × 135 | 3.5 5.8 | 7.66 7.84 | 0.02 | Fr-4 | 5G/Sub-6GHz | Microstrip MIMO array |
Environmental Parameters | Configuration | Environmental Parameters | Configuration |
---|---|---|---|
Frequency band | N77 | SNR | 10 dB |
Operating frequency | 3.5 GHz–5.8 GHz | User equipment noise floor (UE NF) | 5 dB |
Channel bandwidth | 40 MHz | Antenna mode | MIMO |
Line of sight | 2 m | Operating temperature | −10 °C to 40 °C |
gNB transmit power | 10 dB | Duplexing mode | TDD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, H.; Ameen, A.M.; Magdy, A.; Nasser, A.; Abo-Zahhad, M. A Sub-6GHz Two-Port Crescent MIMO Array Antenna for 5G Applications. Electronics 2025, 14, 411. https://doi.org/10.3390/electronics14030411
Ahmed H, Ameen AM, Magdy A, Nasser A, Abo-Zahhad M. A Sub-6GHz Two-Port Crescent MIMO Array Antenna for 5G Applications. Electronics. 2025; 14(3):411. https://doi.org/10.3390/electronics14030411
Chicago/Turabian StyleAhmed, Heba, Allam M. Ameen, Ahmed Magdy, Ahmed Nasser, and Mohammed Abo-Zahhad. 2025. "A Sub-6GHz Two-Port Crescent MIMO Array Antenna for 5G Applications" Electronics 14, no. 3: 411. https://doi.org/10.3390/electronics14030411
APA StyleAhmed, H., Ameen, A. M., Magdy, A., Nasser, A., & Abo-Zahhad, M. (2025). A Sub-6GHz Two-Port Crescent MIMO Array Antenna for 5G Applications. Electronics, 14(3), 411. https://doi.org/10.3390/electronics14030411