Boston Consulting Group Matrix-Based Equilibrium Optimizer for Numerical Optimization and Dynamic Economic Dispatch
Abstract
:1. Introduction
2. Equilibrium Optimizer
2.1. Initialization
2.2. Candidates Update
2.3. Population Update
3. Boston Consulting Group Matrix-Based Equilibrium Optimizer
3.1. Boston Consulting Group Matrix
- Cash Cows: Products with high relative market share but low market growth rates. Renowned for their high profitability and cash-generating capabilities, Cash Cows typically generate excess cash that surpasses the amount needed to maintain business operations. Companies often strive to bolster their portfolios with a strong lineup of “Cash Cows”. The strategic approach to these products is to minimize further investment and to squeeze as much cash as possible, as significant investment in a low-growth sector may not generate commensurate returns.
- Stars: Products with both high relative market share and market growth rate. They may necessitate significant cash infusion to secure and enhance their market standing. However, for companies, this investment is worthwhile because the focus of stars is to protect their market share and gain a larger share of the market growth than competitors. Under the precondition of maintaining market leadership, “Stars” have the potential to mature into “Cash Cows” when market growth rates decline. Conversely, if they fail to preserve their competitive position, they risk degenerating into “Dogs”.
- Question Marks: Products with high market growth rates but low relative market shares. The high market growth rates suggest a need for substantial investment. However, due to their limited market share, these products do not generate substantial cash flows and may even incur a net cash outflow. If “Question Marks” can successfully increase their market share, they may evolve into “Stars”, and subsequently, “Cash Cows”; failure to do so may see them transform into “Dogs”.
- Dogs: Products with low relative market share and market growth. They are generally less profitable and consume more cash than they yield. Dogs can detract from a company’s return on investment (ROI), a critical metric used by investors to gauge the effectiveness of a company’s management. To bolster overall performance, companies need to minimize their investments in “Dogs” or even divest from these less profitable businesses.
3.2. BCGEO
Algorithm 1: BCGEO |
4. Experimental Analysis
4.1. Effectiveness Testing
4.2. Benchmark Function Test
Number of Thresholds | EO | BCGEO | EO | BCGEO | EO | BCGEO | EO | BCGEO | EO | BCGEO | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | std | Mean | std | Best Value | PSNR | QILV | HPSI | ||||||
Starfish | 6 | 31.4265 | 0.129302 | 31.4615 | 0.14732 | 31.61982 | 31.6242 | 19.58764 | 19.8526 | 0.920396 | 0.92691 | 0.594064 | 0.60912 |
7 | 35.30936 | 0.154267 | 35.3607 | 0.15658 | 35.50873 | 35.5135 | 21.28211 | 21.3289 | 0.940816 | 0.94409 | 0.681785 | 0.68428 | |
8 | 38.90176 | 0.165766 | 39.003 | 0.14645 | 39.17261 | 39.1829 | 22.60519 | 22.6649 | 0.95238 | 0.95425 | 0.742732 | 0.74772 | |
Parrot | 6 | 31.6176 | 0.10648 | 31.6587 | 0.07892 | 31.7085 | 31.7087 | 20.56261 | 20.6221 | 0.913635 | 0.92045 | 0.65416 | 0.651928 |
7 | 35.37867 | 0.127182 | 35.4445 | 0.04752 | 35.47665 | 35.4823 | 21.86745 | 21.9952 | 0.934729 | 0.93834 | 0.694495 | 0.69719 | |
8 | 38.78185 | 0.198123 | 38.8512 | 0.17848 | 39.06617 | 39.0674 | 22.95959 | 23.12 | 0.950392 | 0.95444 | 0.726741 | 0.73209 | |
Boats | 6 | 30.74964 | 0.121762 | 30.7969 | 0.10031 | 30.86662 | 30.8686 | 20.72047 | 20.8099 | 0.918029 | 0.92267 | 0.627963 | 0.63262 |
7 | 34.39853 | 0.066497 | 34.431 | 0.04927 | 34.48967 | 34.5095 | 21.7466 | 21.74105 | 0.927998 | 0.92854 | 0.65152 | 0.649653 | |
8 | 37.77482 | 0.111386 | 37.8144 | 0.09347 | 37.95857 | 38.0678 | 23.15214 | 23.2084 | 0.948718 | 0.94974 | 0.71893 | 0.72054 |
Algorithm | Parameters |
---|---|
CBSO | |
RGBSO | |
GGSAS | |
HGSA | |
GLPSO | |
WFS |
BCGEO | EO | CBSO | RGBSO | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | std | Mean | std | Mean | std | Mean | std | |||||
F1 | ≈ | ≈ | ≈ | |||||||||
F2 | − | − | − | |||||||||
F3 | − | ≈ | − | |||||||||
F4 | + | + | + | |||||||||
F5 | + | + | + | |||||||||
F6 | + | + | + | |||||||||
F7 | + | + | + | |||||||||
F8 | + | + | + | |||||||||
F9 | + | + | + | |||||||||
F10 | ≈ | + | + | |||||||||
F11 | − | + | + | |||||||||
F12 | + | + | + | |||||||||
F13 | − | − | − | |||||||||
F14 | + | + | + | |||||||||
F15 | + | + | + | |||||||||
F16 | + | + | + | |||||||||
F17 | − | − | − | |||||||||
F18 | ≈ | + | + | |||||||||
F19 | + | + | + | |||||||||
F20 | + | + | + | |||||||||
F21 | + | + | + | |||||||||
F22 | + | + | + | |||||||||
F23 | + | + | + | |||||||||
F24 | + | + | ≈ | |||||||||
F25 | + | + | + | |||||||||
F26 | + | + | + | |||||||||
F27 | − | ≈ | − | |||||||||
F28 | + | + | + | |||||||||
F29 | ≈ | + | + | |||||||||
w/t/l | - | 19/4/6 | 23/3/3 | 22/2/5 | ||||||||
Friedman Rankings | 2.2241 | 2.8966 | 5.4828 | 6.069 | ||||||||
GGSA | HGSA | GLPSO | WFS | |||||||||
mean | std | mean | std | mean | std | mean | std | |||||
F1 | ≈ | ≈ | ≈ | + | ||||||||
F2 | + | + | + | + | ||||||||
F3 | + | + | + | + | ||||||||
F4 | + | + | + | + | ||||||||
F5 | + | + | + | + | ||||||||
F6 | − | − | + | + | ||||||||
F7 | + | + | + | + | ||||||||
F8 | + | − | + | + | ||||||||
F9 | + | + | + | + | ||||||||
F10 | + | + | + | + | ||||||||
F11 | + | + | + | + | ||||||||
F12 | + | ≈ | ≈ | + | ||||||||
F13 | + | − | ≈ | − | ||||||||
F14 | ≈ | − | + | + | ||||||||
F15 | + | + | + | + | ||||||||
F16 | + | + | + | + | ||||||||
F17 | − | − | ≈ | − | ||||||||
F18 | ≈ | − | ≈ | + | ||||||||
F19 | + | + | + | + | ||||||||
F20 | + | + | + | + | ||||||||
F21 | + | + | + | + | ||||||||
F22 | + | + | + | + | ||||||||
F23 | + | + | + | + | ||||||||
F24 | + | + | + | + | ||||||||
F25 | − | − | + | + | ||||||||
F26 | + | + | + | + | ||||||||
F27 | + | − | + | + | ||||||||
F28 | + | + | + | + | ||||||||
F29 | + | + | + | + | ||||||||
w/t/l | 23/3/3 | 19/2/8 | 24/5/0 | 27/0/2 | ||||||||
Friedman Rankings | 4.3103 | 3.4655 | 5.6552 | 5.8966 |
BCGEO | EO | CBSO | RGBSO | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | std | Mean | std | Mean | std | Mean | std | |||||
F1 | ≈ | + | ≈ | |||||||||
F2 | − | − | − | |||||||||
F3 | − | + | + | |||||||||
F4 | + | + | + | |||||||||
F5 | + | + | + | |||||||||
F6 | + | + | + | |||||||||
F7 | + | + | + | |||||||||
F8 | + | + | + | |||||||||
F9 | + | + | + | |||||||||
F10 | + | + | + | |||||||||
F11 | − | + | + | |||||||||
F12 | ≈ | + | + | |||||||||
F13 | ≈ | − | − | |||||||||
F14 | ≈ | + | + | |||||||||
F15 | + | + | + | |||||||||
F16 | + | + | + | |||||||||
F17 | − | − | − | |||||||||
F18 | ≈ | + | + | |||||||||
F19 | + | + | + | |||||||||
F20 | + | + | + | |||||||||
F21 | + | + | + | |||||||||
F22 | + | + | + | |||||||||
F23 | + | + | + | |||||||||
F24 | + | + | + | |||||||||
F25 | + | + | + | |||||||||
F26 | + | + | + | |||||||||
F27 | + | + | + | |||||||||
F28 | + | + | + | |||||||||
F29 | + | + | + | |||||||||
w/t/l | − | 20/5/4 | 26/0/3 | 25/1/3 | ||||||||
Friedman Rankings | 2.069 | 2.6897 | 5.4138 | 5.8966 | ||||||||
GGSA | HGSA | GLPSO | WFS | |||||||||
mean | std | mean | std | mean | std | mean | std | |||||
F1 | − | − | ≈ | + | ||||||||
F2 | + | + | + | − | ||||||||
F3 | + | + | + | + | ||||||||
F4 | + | + | + | + | ||||||||
F5 | + | + | + | + | ||||||||
F6 | − | − | + | + | ||||||||
F7 | + | + | + | + | ||||||||
F8 | + | − | + | + | ||||||||
F9 | + | + | + | + | ||||||||
F10 | + | + | + | + | ||||||||
F11 | − | − | + | + | ||||||||
F12 | + | − | ≈ | + | ||||||||
F13 | + | − | + | + | ||||||||
F14 | − | − | − | + | ||||||||
F15 | + | + | + | + | ||||||||
F16 | + | + | + | + | ||||||||
F17 | − | − | + | + | ||||||||
F18 | ≈ | ≈ | − | + | ||||||||
F19 | + | + | + | + | ||||||||
F20 | + | + | + | + | ||||||||
F21 | + | + | + | + | ||||||||
F22 | + | + | + | + | ||||||||
F23 | + | + | + | + | ||||||||
F24 | + | + | + | + | ||||||||
F25 | − | − | + | + | ||||||||
F26 | + | + | + | + | ||||||||
F27 | + | + | + | + | ||||||||
F28 | + | + | + | + | ||||||||
F29 | + | + | + | + | ||||||||
w/t/l | 22/1/6 | 19/1/9 | 25/2/2 | 28/0/1 | ||||||||
Friedman Rankings | 5.8966 | 3.5862 | 6.3103 | 5.8621 |
BCGEO | EO | CBSO | RGBSO | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | std | Mean | std | Mean | std | Mean | std | |||||
F1 | ≈ | + | ≈ | |||||||||
F2 | − | − | − | |||||||||
F3 | − | + | ≈ | |||||||||
F4 | + | + | + | |||||||||
F5 | + | + | + | |||||||||
F6 | + | + | + | |||||||||
F7 | + | + | + | |||||||||
F8 | + | + | + | |||||||||
F9 | + | + | + | |||||||||
F10 | − | − | − | |||||||||
F11 | − | + | + | |||||||||
F12 | + | + | + | |||||||||
F13 | − | − | − | |||||||||
F14 | + | + | + | |||||||||
F15 | + | + | + | |||||||||
F16 | + | + | + | |||||||||
F17 | − | − | − | |||||||||
F18 | + | + | + | |||||||||
F19 | + | + | + | |||||||||
F20 | + | + | + | |||||||||
F21 | + | + | + | |||||||||
F22 | + | + | + | |||||||||
F23 | + | + | + | |||||||||
F24 | − | ≈ | − | |||||||||
F25 | + | + | + | |||||||||
F26 | + | + | + | |||||||||
F27 | − | + | − | |||||||||
F28 | + | + | + | |||||||||
F29 | + | + | + | |||||||||
w/t/l | − | 20/1/8 | 24/1/4 | 21/2/6 | ||||||||
Friedman Rankings | 2.5517 | 2.9655 | 6.0345 | 5.6897 | ||||||||
GGSA | HGSA | GLPSO | WFS | |||||||||
mean | std | mean | std | mean | std | mean | std | |||||
F1 | ≈ | ≈ | + | + | ||||||||
F2 | + | + | − | − | ||||||||
F3 | + | + | + | + | ||||||||
F4 | + | + | + | + | ||||||||
F5 | + | + | − | + | ||||||||
F6 | − | − | + | + | ||||||||
F7 | + | + | + | + | ||||||||
F8 | + | + | + | + | ||||||||
F9 | ≈ | ≈ | − | + | ||||||||
F10 | + | + | + | + | ||||||||
F11 | − | − | + | + | ||||||||
F12 | + | ≈ | + | + | ||||||||
F13 | − | − | + | + | ||||||||
F14 | + | ≈ | + | + | ||||||||
F15 | + | + | + | + | ||||||||
F16 | + | + | + | + | ||||||||
F17 | − | − | + | + | ||||||||
F18 | ≈ | ≈ | + | + | ||||||||
F19 | + | + | + | + | ||||||||
F20 | + | + | + | + | ||||||||
F21 | + | + | − | + | ||||||||
F22 | + | + | + | + | ||||||||
F23 | + | + | + | + | ||||||||
F24 | + | + | + | + | ||||||||
F25 | − | − | + | + | ||||||||
F26 | + | + | + | + | ||||||||
F27 | + | + | + | + | ||||||||
F28 | + | + | + | + | ||||||||
F29 | + | ≈ | + | + | ||||||||
w/t/l | 21/3/5 | 18/6/5 | 25/0/4 | 28/0/1 | ||||||||
Friedman Rankings | 4.5862 | 3.7586 | 4.3448 | 6.069 |
4.3. Real-World Optimization Test
4.3.1. Dynamic Economic Dispatch
4.3.2. Cassini 2: Spacecraft Trajectory Optimization
5. Discussion
5.1. Parameter Analysis of
5.2. Population Diversity Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zou, D.; Gong, D. Differential Evolution Based on Migrating Variables for the Combined Heat and Power Dynamic Economic Dispatch. Energy 2022, 238, 121664. [Google Scholar] [CrossRef]
- Moustafa, G.; Smaili, I.H.; Almalawi, D.R.; Ginidi, A.R.; Shaheen, A.M.; Elshahed, M.; Mansour, H.S.E. Dwarf Mongoose Optimizer for Optimal Modeling of Solar PV Systems and Parameter Extraction. Electronics 2023, 12, 4990. [Google Scholar] [CrossRef]
- Yang, H.; Gao, S.; Lei, Z.; Li, J.; Yu, Y.; Wang, Y. An Improved Spherical Evolution with Enhanced Exploration Capabilities to Address Wind Farm Layout Optimization Problem. Eng. Appl. Artif. Intell. 2023, 123, 106198. [Google Scholar] [CrossRef]
- Nssibi, M.; Manita, G.; Korbaa, O. Advances in Nature-Inspired Metaheuristic Optimization for Feature Selection Problem: A Comprehensive Survey. Comput. Sci. Rev. 2023, 49, 100559. [Google Scholar] [CrossRef]
- Gogna, A.; Tayal, A. Metaheuristics: Review and Application. J. Exp. Theor. Artif. Intell. 2013, 25, 503–526. [Google Scholar] [CrossRef]
- Eiben, A.E.; Smith, J. From Evolutionary Computation to the Evolution of Things. Nature 2015, 521, 476–482. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Abdel-Fatah, L.; Sangaiah, A.K. Metaheuristic Algorithms: A Comprehensive Review. In Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 185–231. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, H.; Li, J.; Zhang, X.; Lu, B.; Gao, S. Comparative Study on Single and Multiple Chaotic Maps Incorporated Grey Wolf Optimization Algorithms. IEEE Access 2021, 9, 77416–77437. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic Algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Lambora, A.; Gupta, K.; Chopra, K. Genetic Algorithm—A Literature Review. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 380–384. [Google Scholar] [CrossRef]
- Garud, K.S.; Jayaraj, S.; Lee, M.Y. A Review on Modeling of Solar Photovoltaic Systems Using Artificial Neural Networks, Fuzzy Logic, Genetic Algorithm and Hybrid Models. Int. J. Energy Res. 2021, 45, 6–35. [Google Scholar] [CrossRef]
- Xu, Z.; Gao, S.; Yang, H.; Lei, Z. SCJADE: Yet Another State-of-the-Art Differential Evolution Algorithm. IEEJ Trans. Electr. Electron. Eng. 2021, 16, 644–646. [Google Scholar] [CrossRef]
- Gao, S.; Wang, K.; Tao, S.; Jin, T.; Dai, H.; Cheng, J. A State-of-the-Art Differential Evolution Algorithm for Parameter Estimation of Solar Photovoltaic Models. Energy Convers. Manag. 2021, 230, 113784. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Z.; Lei, Z.; Xiong, R.; Cheng, J.; Gao, S. Surrogate-Assisted Differential Evolution for Wave Energy Converters Optimization. In IEEE Transactions on Emerging Topics in Computational Intelligence; IEEE: Piscataway, NJ, USA, 2024; pp. 1–10. [Google Scholar] [CrossRef]
- Jahandideh-Tehrani, M.; Bozorg-Haddad, O.; Loáiciga, H.A. Application of Particle Swarm Optimization to Water Management: An Introduction and Overview. Environ. Monit. Assess. 2020, 192, 281. [Google Scholar] [CrossRef]
- Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle Swarm Optimization: A Comprehensive Survey. IEEE Access 2022, 10, 10031–10061. [Google Scholar] [CrossRef]
- Niu, S.; Nie, Z.; Liu, J.; Chu, M. An Application Study of Improved Iris Image Localization Based on an Evolutionary Algorithm. Electronics 2023, 12. [Google Scholar] [CrossRef]
- Dorigo, M.; Blum, C. Ant Colony Optimization Theory: A Survey. Theor. Comput. Sci. 2005, 344, 243–278. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant Colony Optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Martens, D.; De Backer, M.; Haesen, R.; Vanthienen, J.; Snoeck, M.; Baesens, B. Classification With Ant Colony Optimization. IEEE Trans. Evol. Comput. 2007, 11, 651–665. [Google Scholar] [CrossRef]
- Lnenicka, M.; Komarkova, J. Developing a Government Enterprise Architecture Framework to Support the Requirements of Big and Open Linked Data with the Use of Cloud Computing. Int. J. Inf. Manag. 2019, 46, 124–141. [Google Scholar] [CrossRef]
- Xu, Z.; Li, X.; Meng, X.; Liu, Y. A Distributed Brain Storm Optimization for Numerical Optimization and Graph Planarization. IEEE Access 2019, 7, 39770–39781. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, X.; Zhang, M.; Lei, X.; Lu, H.; Shi, Y. Solving Multimodal Optimization Problems by a Knowledge-Driven Brain Storm Optimization Algorithm. Appl. Soft Comput. 2024, 150, 111105. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Rashedi, E.; Rashedi, E.; Nezamabadi-pour, H. A Comprehensive Survey on Gravitational Search Algorithm. Swarm Evol. Comput. 2018, 41, 141–158. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, S.; Zhou, M.; Yu, Y. A Multi-Layered Gravitational Search Algorithm for Function Optimization and Real-World Problems. IEEE/CAA J. Autom. Sin. 2021, 8, 94–109. [Google Scholar] [CrossRef]
- Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G.; Lv, J. Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification. IEEE Trans. Cybern. 2020, 50, 3840–3854. [Google Scholar] [CrossRef] [PubMed]
- Karnan, M.; Logheshwari, T. Improved Implementation of Brain MRI Image Segmentation Using Ant Colony System. In Proceedings of the 2010 IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, India, 28–29 December 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Mahalakshmi, S.; Velmurugan, T. Detection of Brain Tumor by Particle Swarm Optimization Using Image Segmentation. Indian J. Sci. Technol. 2015, 8. [Google Scholar] [CrossRef]
- Vijay, V.; Kavitha, A.; Rebecca, S.R. Automated Brain Tumor Segmentation and Detection in MRI Using Enhanced Darwinian Particle Swarm Optimization(EDPSO). Procedia Comput. Sci. 2016, 92, 475–480. [Google Scholar] [CrossRef]
- Verma, H.; Verma, D.; Tiwari, P.K. A Population Based Hybrid FCM-PSO Algorithm for Clustering Analysis and Segmentation of Brain Image. Expert Syst. Appl. 2021, 167, 114121. [Google Scholar] [CrossRef]
- Miikkulainen, R.; Francon, O.; Meyerson, E.; Qiu, X.; Sargent, D.; Canzani, E.; Hodjat, B. From Prediction to Prescription: Evolutionary Optimization of Nonpharmaceutical Interventions in the COVID-19 Pandemic. IEEE Trans. Evol. Comput. 2021, 25, 386–401. [Google Scholar] [CrossRef] [PubMed]
- Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium Optimizer: A Novel Optimization Algorithm. Knowl.-Based Syst. 2020, 191, 105190. [Google Scholar] [CrossRef]
- Warn, A.; Brew, J. Mass balance. Water Res. 1980, 14, 1427–1434. [Google Scholar] [CrossRef]
- Fan, Q.; Huang, H.; Yang, K.; Zhang, S.; Yao, L.; Xiong, Q. A Modified Equilibrium Optimizer Using Opposition-Based Learning and Novel Update Rules. Expert Syst. Appl. 2021, 170, 114575. [Google Scholar] [CrossRef]
- Houssein, E.H.; Çelik, E.; Mahdy, M.A.; Ghoniem, R.M. Self-Adaptive Equilibrium Optimizer for Solving Global, Combinatorial, Engineering, and Multi-Objective Problems. Expert Syst. Appl. 2022, 195, 116552. [Google Scholar] [CrossRef]
- Rabehi, A.; Nail, B.; Helal, H.; Douara, A.; Ziane, A.; Amrani, M.; Akkal, B.; Benamara, Z. Optimal Estimation of Schottky Diode Parameters Using a Novel Optimization Algorithm: Equilibrium Optimizer. Superlattices Microstruct 2020, 146, 106665. [Google Scholar] [CrossRef]
- Ndi, F.E.; Perabi, S.N.; Ndjakomo, S.E.; Ondoua Abessolo, G.; Mengounou Mengata, G. Estimation of Single-Diode and Two Diode Solar Cell Parameters by Equilibrium Optimizer Method. Energy Rep. 2021, 7, 4761–4768. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Mirjalili, S.; Chakrabortty, R.K.; Ryan, M.J. Solar Photovoltaic Parameter Estimation Using an Improved Equilibrium Optimizer. Sol. Energy 2020, 209, 694–708. [Google Scholar] [CrossRef]
- Wang, J.; Yang, B.; Li, D.; Zeng, C.; Chen, Y.; Guo, Z.; Zhang, X.; Tan, T.; Shu, H.; Yu, T. Photovoltaic Cell Parameter Estimation Based on Improved Equilibrium Optimizer Algorithm. Energy Convers. Manag. 2021, 236, 114051. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Nguyen, T.T.; Duong, M.Q. An Improved Equilibrium Optimizer for Optimal Placement of Photovoltaic Systems in Radial Distribution Power Networks. Neural Comput. Appl. 2022, 34, 6119–6148. [Google Scholar] [CrossRef]
- Gui, P.; He, F.; Ling, B.W.K.; Zhang, D. United Equilibrium Optimizer for Solving Multimodal Image Registration. Knowl.-Based Syst. 2021, 233, 107552. [Google Scholar] [CrossRef]
- Dinkar, S.K.; Deep, K.; Mirjalili, S.; Thapliyal, S. Opposition-Based Laplacian Equilibrium Optimizer with Application in Image Segmentation Using Multilevel Thresholding. Expert Syst. Appl. 2021, 174, 114766. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Chang, V.; Mohamed, R. A Novel Equilibrium Optimization Algorithm for Multi-Thresholding Image Segmentation Problems. Neural Comput. Appl. 2021, 33, 10685–10718. [Google Scholar] [CrossRef]
- Doerr, B.; Neumann, F. (Eds.) Theory of Evolutionary Computation: Recent Developments in Discrete Optimization; Natural Computing Series; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Salleh, M.N.M.; Hussain, K.; Cheng, S.; Shi, Y.; Muhammad, A.; Ullah, G.; Naseem, R. Exploration and Exploitation Measurement in Swarm-Based Metaheuristic Algorithms: An Empirical Analysis. In Recent Advances on Soft Computing and Data Mining; Ghazali, R., Deris, M.M., Nawi, N.M., Abawajy, J.H., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 700, pp. 24–32. [Google Scholar] [CrossRef]
- Chen, S.; Bolufe-Rohler, A.; Montgomery, J.; Hendtlass, T. An Analysis on the Effect of Selection on Exploration in Particle Swarm Optimization and Differential Evolution. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 3037–3044. [Google Scholar] [CrossRef]
- Sadollah, A.; Sayyaadi, H.; Yoo, D.G.; Lee, H.M.; Kim, J.H. Mine Blast Harmony Search: A New Hybrid Optimization Method for Improving Exploration and Exploitation Capabilities. Appl. Soft Comput. 2018, 68, 548–564. [Google Scholar] [CrossRef]
- Jerebic, J.; Mernik, M.; Liu, S.H.; Ravber, M.; Baketarić, M.; Mernik, L.; Črepinšek, M. A Novel Direct Measure of Exploration and Exploitation Based on Attraction Basins. Expert Syst. Appl. 2021, 167, 114353. [Google Scholar] [CrossRef]
- Crepinsek, M.; Mernik, M.; Liu, S.H. Analysis of Exploration and Exploitation in Evolutionary Algorithms by Ancestry Trees. Int. J. Innov. Comput. Appl. 2011, 3, 11. [Google Scholar] [CrossRef]
- Morales-Castañeda, B.; Zaldívar, D.; Cuevas, E.; Fausto, F.; Rodríguez, A. A Better Balance in Metaheuristic Algorithms: Does It Exist? Swarm Evol. Comput. 2020, 54, 100671. [Google Scholar] [CrossRef]
- Črepinšek, M.; Liu, S.H.; Mernik, M. Exploration and Exploitation in Evolutionary Algorithms: A Survey. ACM Comput. Surv. 2013, 45, 1–33. [Google Scholar] [CrossRef]
- Yang, M.; Li, C.; Cai, Z.; Guan, J. Differential Evolution With Auto-Enhanced Population Diversity. IEEE Trans. Cybern. 2015, 45, 302–315. [Google Scholar] [CrossRef]
- Cheng, S.; Shi, Y.; Qin, Q.; Zhang, Q.; Bai, R. Population Diversity Maintenance In Brain Storm Optimization Algorithm. J. Artif. Intell. Soft Comput. Res. 2014, 4, 83–97. [Google Scholar] [CrossRef]
- Sudholt, D. The Benefits of Population Diversity in Evolutionary Algorithms: A Survey of Rigorous Runtime Analyses. In Theory of Evolutionary Computation; Doerr, B., Neumann, F., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 359–404. [Google Scholar] [CrossRef]
- Blackwell, T.M. Particle Swarms and Population Diversity. Soft Comput. 2005, 9, 793–802. [Google Scholar] [CrossRef]
- Hambrick, D.C.; MacMILLAN, I.C.; Day, D.L. Strategic Attributes and Performance in the BCG Matrix—A PIMS-Based Analysis of Industrial Product Businesses. Acad. Manag. J. 1982, 25, 510–531. [Google Scholar] [CrossRef]
- Hersen, A.; Silva, J.C.G.L.D.; Timofeiczyk Junior, R. A Critical Approach to the Use of the Bcg Matrix: Portfolio Analysis of Brazilian Pulp Marketed in the International Market. Rev. Árvore 2018, 42, e420308. [Google Scholar] [CrossRef]
- Chiu, C.C.; Lin, K.S. Rule-Based BCG Matrix for Product Portfolio Analysis. In Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing; Lee, R., Ed.; Springer International Publishing: Cham, Switzerland, 2020; Volume 850, pp. 17–32. [Google Scholar] [CrossRef]
- Houssein, E.H.; Dirar, M.; Abualigah, L.; Mohamed, W.M. An Efficient Equilibrium Optimizer with Support Vector Regression for Stock Market Prediction. Neural Comput. Appl. 2022, 34, 3165–3200. [Google Scholar] [CrossRef]
- Liu, J.; Li, W.; Li, Y. LWMEO: An Efficient Equilibrium Optimizer for Complex Functions and Engineering Design Problems. Expert Syst. Appl. 2022, 198, 116828. [Google Scholar] [CrossRef]
- Minocha, S.; Singh, B. A Novel Equilibrium Optimizer Based on Levy Flight and Iterative Cosine Operator for Engineering Optimization Problems. Expert Syst. 2022, 39, e12843. [Google Scholar] [CrossRef]
- Yang, L.; Li, J.; Xiong, R.; Todo, Y.; Gao, S. Adaptive Chaotic Equilibrium Optimiser. Int. J. Bio-Inspired Comput. 2022, 19, 147–157. [Google Scholar] [CrossRef]
- Yang, L.; Xu, Z.; Liu, Y.; Tian, G. An Improved Equilibrium Optimizer with a Decreasing Equilibrium Pool. Symmetry 2022, 14, 1227. [Google Scholar] [CrossRef]
- Mutandwa, E.; Kanuma, N.T.; Rusatira, E.; Mugenzi, P.; Govere, I.; Foti, R. Analysis of Coffee Export Marketing in Rwanda: Application of the Boston Consulting Group Matrix. Afr. J. Bus. Manag. 2009, 3, 210. [Google Scholar]
- Myllylä, Y.; Kaivo-oja, J. Integrating Delphi Methodology to Some Classical Concepts of the Boston Consulting Group Framework: Arctic Maritime Technology BCG Delphi Foresight—A Pilot Study from Finland. Eur. J. Futur. Res. 2015, 3, 2. [Google Scholar] [CrossRef]
- Lukovac, V.; Pamučar, D.; Popović, M.; Đorović, B. Portfolio Model for Analyzing Human Resources: An Approach Based on Neuro-Fuzzy Modeling and the Simulated Annealing Algorithm. Expert Syst. Appl. 2017, 90, 318–331. [Google Scholar] [CrossRef]
- Mathieu, R.; Gibson, J. A Methodology for Large-Scale R&D Planning Based on Cluster Analysis. IEEE Trans. Eng. Manag. 1993, 40, 283–292. [Google Scholar] [CrossRef]
- Cooper, R.G.; Edgett, S.J.; Kleinschmidt, E.J. New Product Portfolio Management: Practices and Performance. J. Prod. Innov. Manag. Int. Publ. Prod. Dev. Manag. Assoc. 1999, 16, 333–351. [Google Scholar] [CrossRef]
- Yang, X.; Li, W.; Zhang, P.; Chen, H.; Lai, M.; Zhao, S. The Dynamics and Driving Mechanisms of Rural Revitalization in Western China. Agriculture 2023, 13, 1448. [Google Scholar] [CrossRef]
- Lei, Z.; Gao, S.; Zhang, Z.; Yang, H.; Li, H. A Chaotic Local Search-Based Particle Swarm Optimizer for Large-Scale Complex Wind Farm Layout Optimization. IEEE/CAA J. Autom. Sin. 2023, 10, 1168–1180. [Google Scholar] [CrossRef]
- Awad, N.H.; Ali, M.Z.; Suganthan, P.N.; Liang, J.J.; Qu, B.Y. Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization; Technical Report; Nanyang Technological University: Singapore, 2016. [Google Scholar]
- Das, S.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems; Technical Report; Jadavpur University; Nanyang Technological University: Kolkata, India, 2010; pp. 341–359. [Google Scholar]
- Carrasco, J.; García, S.; Rueda, M.; Das, S.; Herrera, F. Recent Trends in the Use of Statistical Tests for Comparing Swarm and Evolutionary Computing Algorithms: Practical Guidelines and a Critical Review. Swarm Evol. Comput. 2020, 54, 100665. [Google Scholar] [CrossRef]
- Hammouche, K.; Diaf, M.; Siarry, P. A Comparative Study of Various Meta-Heuristic Techniques Applied to the Multilevel Thresholding Problem. Eng. Appl. Artif. Intell. 2010, 23, 676–688. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, P.; Heidari, A.A.; Chen, H.; Turabieh, H.; Mafarja, M.; Li, C. Multilevel Threshold Image Segmentation with Diffusion Association Slime Mould Algorithm and Renyi’s Entropy for Chronic Obstructive Pulmonary Disease. Comput. Biol. Med. 2021, 134, 104427. [Google Scholar] [CrossRef]
- Bandyopadhyay, R.; Kundu, R.; Oliva, D.; Sarkar, R. Segmentation of Brain MRI Using an Altruistic Harris Hawks’ Optimization Algorithm. Knowl.-Based Syst. 2021, 232, 107468. [Google Scholar] [CrossRef]
- Yu, Y.; Gao, S.; Cheng, S.; Wang, Y.; Song, S.; Yuan, F. CBSO: A Memetic Brain Storm Optimization with Chaotic Local Search. Memetic Comput. 2017, 10, 353–367. [Google Scholar] [CrossRef]
- Cao, Z.; Shi, Y.; Rong, X.; Liu, B.; Du, Z.; Yang, B. Random Grouping Brain Storm Optimization Algorithm with a New Dynamically Changing Step Size. In Proceedings of the International Conference in Swarm Intelligence, Beijing, China, 25–28 June 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 357–364. [Google Scholar]
- Dowlatshahi, M.B.; Nezamabadi-Pour, H. GGSA: A Grouping Gravitational Search Algorithm for Data Clustering. Eng. Appl. Artif. Intell. 2014, 36, 114–121. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Y.; Gao, S.; Pan, H.; Yang, G. A Hierarchical Gravitational Search Algorithm with an Effective Gravitational Constant. Swarm Evol. Comput. 2019, 46, 118–139. [Google Scholar] [CrossRef]
- Lin, A.; Sun, W.; Yu, H.; Wu, G.; Tang, H. Global Genetic Learning Particle Swarm Optimization with Diversity Enhancement by Ring Topology. Swarm Evol. Comput. 2019, 44, 571–583. [Google Scholar] [CrossRef]
- Covic, N.; Lacevic, B. Wingsuit Flying Search—A Novel Global Optimization Algorithm. IEEE Access Pract. Innov. Open Solut. 2020, 8, 53883–53900. [Google Scholar] [CrossRef]
- Ross, D.; Kim, S. Dynamic Economic Dispatch of Generation. IEEE Trans. Power Appar. Syst. 1980, PAS-99, 2060–2068. [Google Scholar] [CrossRef]
- Xia, X.; Elaiw, A. Optimal Dynamic Economic Dispatch of Generation: A Review. Electr. Power Syst. Res. 2010, 80, 975–986. [Google Scholar] [CrossRef]
- Zaman, M.F.; Elsayed, S.M.; Ray, T.; Sarker, R.A. Evolutionary Algorithms for Dynamic Economic Dispatch Problems. IEEE Trans. Power Syst. 2016, 31, 1486–1495. [Google Scholar] [CrossRef]
- Duan, Y.; Zhao, Y.; Hu, J. An Initialization-Free Distributed Algorithm for Dynamic Economic Dispatch Problems in Microgrid: Modeling, Optimization and Analysis. Sustain. Energy Grids Netw. 2023, 34, 101004. [Google Scholar] [CrossRef]
- Vasile, M.; Minisci, E.; Locatelli, M. An Inflationary Differential Evolution Algorithm for Space Trajectory Optimization. IEEE Trans. Evol. Comput. 2011, 15, 267–281. [Google Scholar] [CrossRef]
- Zuo, M.; Dai, G.; Peng, L.; Wang, M.; Liu, Z.; Chen, C. A Case Learning-Based Differential Evolution Algorithm for Global Optimization of Interplanetary Trajectory Design. Appl. Soft Comput. 2020, 94, 106451. [Google Scholar] [CrossRef]
- Gao, S.; Yu, Y.; Wang, Y.; Wang, J.; Cheng, J.; Zhou, M. Chaotic Local Search-Based Differential Evolution Algorithms for Optimization. IEEE Trans. Syst. Man, Cybern. Syst. 2021, 51, 3954–3967. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, T.; Lei, Z.; Wang, Y.; Yang, H.; Gao, S. A Chaotic Local Search-Based LSHADE with Enhanced Memory Storage Mechanism for Wind Farm Layout Optimization. Appl. Soft Comput. 2023, 141, 110306. [Google Scholar] [CrossRef]
- Chen, Q.; Xue, B.; Zhang, M. Preserving Population Diversity Based on Transformed Semantics in Genetic Programming for Symbolic Regression. IEEE Trans. Evol. Comput. 2021, 25, 433–447. [Google Scholar] [CrossRef]
- Brindha, S.; Miruna Joe Amali, S. A Robust and Adaptive Fuzzy Logic Based Differential Evolution Algorithm Using Population Diversity Tuning for Multi-Objective Optimization. Eng. Appl. Artif. Intell. 2021, 102, 104240. [Google Scholar] [CrossRef]
BCGEO | Fitness Discard | Fitness Improve Discard | Only Pool Change | No Pool Change | EO | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | std | Mean | std | Mean | std | Mean | std | Mean | std | Mean | std | |
F1 | ||||||||||||
F2 | ||||||||||||
F3 | ||||||||||||
F4 | ||||||||||||
F5 | ||||||||||||
F6 | ||||||||||||
F7 | ||||||||||||
F8 | ||||||||||||
F9 | ||||||||||||
F10 | ||||||||||||
F11 | ||||||||||||
F12 | ||||||||||||
F13 | ||||||||||||
F14 | ||||||||||||
F15 | ||||||||||||
F16 | ||||||||||||
F17 | ||||||||||||
F18 | ||||||||||||
F19 | ||||||||||||
F20 | ||||||||||||
F21 | ||||||||||||
F22 | ||||||||||||
F23 | ||||||||||||
F24 | ||||||||||||
F25 | ||||||||||||
F26 | ||||||||||||
F27 | ||||||||||||
F28 | ||||||||||||
F29 | ||||||||||||
w/t/l | 19/4/6 | 18/5/6 | 18/5/6 | 18/5/6 | 17/4/8 | - | ||||||
Friedman Rankings | 2.8793 | 3.2241 | 3.1552 | 3.5172 | 3.569 | 4.6552 |
[150, 135, 73, 60, 73, 57, 20, 47, 20] | |
[470, 460, 340, 300, 243, 160, 130, 120, 80] | |
Dimension |
Mean | std | |
---|---|---|
BCGEO | ||
EO | ||
CBSO | ||
RGBSO | ||
GGSA | ||
HGSA | ||
GLPSO | ||
WFS |
Mean | std | |
---|---|---|
BCGEO | ||
EO | ||
CBSO | ||
RGBSO | ||
GGSA | ||
HGSA | ||
GLPSO | ||
WFS |
0.9 | 0.925 | 0.95 | 0.975 | 0.985 | 0.988 | 0.999 | |
Friedman Ranking | 4.2586 | 3.9828 | 3.8793 | 4.0862 | 3.4138 | 4.2069 | 4.1724 |
Wilcoxon Test p-value | 2.49 | 2.90 | 6.41 | 6.35 | − | 3.68 | 4.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Xu, Z.; Yuan, F.; Liu, Y.; Tian, G. Boston Consulting Group Matrix-Based Equilibrium Optimizer for Numerical Optimization and Dynamic Economic Dispatch. Electronics 2025, 14, 456. https://doi.org/10.3390/electronics14030456
Yang L, Xu Z, Yuan F, Liu Y, Tian G. Boston Consulting Group Matrix-Based Equilibrium Optimizer for Numerical Optimization and Dynamic Economic Dispatch. Electronics. 2025; 14(3):456. https://doi.org/10.3390/electronics14030456
Chicago/Turabian StyleYang, Lin, Zhe Xu, Fenggang Yuan, Yanting Liu, and Guozhong Tian. 2025. "Boston Consulting Group Matrix-Based Equilibrium Optimizer for Numerical Optimization and Dynamic Economic Dispatch" Electronics 14, no. 3: 456. https://doi.org/10.3390/electronics14030456
APA StyleYang, L., Xu, Z., Yuan, F., Liu, Y., & Tian, G. (2025). Boston Consulting Group Matrix-Based Equilibrium Optimizer for Numerical Optimization and Dynamic Economic Dispatch. Electronics, 14(3), 456. https://doi.org/10.3390/electronics14030456