Exploring Factors Influencing Depression: Socioeconomic Perspectives Using Machine Learning Analytics
Abstract
:1. Introduction
- Objective 1: Identify key socioeconomic factors associated with depression in South Korea using logistic regression analysis.
- Objective 2: Examine the interplay of SES factors with South Korea’s unique cultural and societal characteristics.
- Objective 3: Provide actionable insights for policymakers to design targeted interventions for vulnerable populations, reducing the burden of depression and improving mental health outcomes.
2. Related Works
2.1. Socioeconomic Status and Depression
2.2. Techniques in Depression Research
2.3. Cultural and Regional Characteristics of South Korea
3. Materials and Methods
3.1. Data Source
3.2. Data Preprocessing
3.3. Building Logistics Regression Model and Analysis Process
4. Results
4.1. Model Performance
4.2. Scatter Plot Visualization
4.3. Logistic Regression Results with Odds Ratio
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AB | Adaboost |
DT | Decision Tree |
GB | Gradient Boosting |
KDCA | Korea Disease Control and Prevention Agency |
KNHANES | Korean National Health and Nutrition Examination Survey |
KNN | K-Nearest Neighbors |
LDA | Linear Discriminant Analysis |
LR | Logistic Regression |
NB | Naïve Bayes |
PHQ-9 | Patient Health Questionnaire-9 |
RF | Random Forest |
ROC | Receiver Operating Characteristic |
SES | SocioEconomic Status |
SVM | Support Vector Machine |
TabPFN | Tabular Prior-Function Network |
TabTran | Tabular Transformer |
XGBoost | Extreme Gradient Boosting |
References
- WHO. Depressive Disorder (Depression). Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 22 January 2025).
- Lee, K.-m.; Park, M.-b.; Kim, E.-a.; Lim, S.-c.; Kang, S.-h.; Kim, S.-h.; Kim, E.-s.; Kim, J.-h. A Study on Spatial Autocorrelation according to the Geographical Distribution of Major Health Indicators: Focusing on Regional Units in Chungcheong Province. Public Health Wkly. Rep. 2024, 17, 644–645. [Google Scholar] [CrossRef]
- Kumar, P.M.; Kumar, V.U.; Meenakshi, S.; Bahekar, T.N.; Narapaka, P.K.; Dhingra, S.; Murti, K. Epidemiology and risk factors of mental disorders. In A Review on Diverse Neurological Disorders; Elsevier: Amsterdam, The Netherlands, 2024; pp. 3–12. [Google Scholar]
- Moitra, M.; Owens, S.; Hailemariam, M.; Wilson, K.S.; Mensa-Kwao, A.; Gonese, G.; Kamamia, C.K.; White, B.; Young, D.M.; Collins, P.Y. Global mental health: Where we are and where we are going. Curr. Psychiatry Rep. 2023, 25, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R. Diagnosing the Diagnostic and Statistical Manual of Mental Disorders; Routledge: London, UK, 2018. [Google Scholar]
- Adler, N.E.; Boyce, T.; Chesney, M.A.; Cohen, S.; Folkman, S.; Kahn, R.L.; Syme, S.L. Socioeconomic status and health: The challenge of the gradient. Am. Psychol. 1994, 49, 15–24. [Google Scholar] [CrossRef]
- Lorant, V.; Deliège, D.; Eaton, W.; Robert, A.; Philippot, P.; Ansseau, M. Socioeconomic inequalities in depression: A meta-analysis. Am. J. Epidemiol. 2003, 157, 98–112. [Google Scholar] [CrossRef] [PubMed]
- Hudson, C.G. Socioeconomic status and mental illness: Tests of the social causation and selection hypotheses. Am. J. Orthopsychiatry 2005, 75, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Schmitz, N.; Dewa, C. Socioeconomic status and the risk of major depression: The Canadian National Population Health Survey. J. Epidemiol. Community Health 2010, 64, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Miech, R.A.; Caspi, A.; Moffitt, T.E.; Wright, B.R.E.; Silva, P.A. Low socioeconomic status and mental disorders: A longitudinal study of selection and causation during young adulthood. Am. J. Sociol. 1999, 104, 1096–1131. [Google Scholar] [CrossRef]
- Reiss, F. Socioeconomic inequalities and mental health problems in children and adolescents: A systematic review. Soc. Sci. Med. 2013, 90, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, J.; Marmot, M. Health inequalities and the psychosocial environment—Two scientific challenges. Soc. Sci. Med. 2004, 58, 1463–1473. [Google Scholar] [CrossRef] [PubMed]
- Stansfeld, S.; Candy, B. Psychosocial work environment and mental health—A meta-analytic review. Scand. J. Work Environ. Health 2006, 32, 443–462. [Google Scholar] [CrossRef]
- Reme, B.-A.; Wörn, J.; Skirbekk, V. Longitudinal evidence on the development of socioeconomic inequalities in mental health due to the COVID-19 pandemic in Norway. Sci. Rep. 2022, 12, 3837. [Google Scholar] [CrossRef]
- Kong, L.; Zhang, H. Latent profile analysis of depression in non-hospitalized elderly patients with hypertension and its influencing factors. J. Affect. Disord. 2023, 341, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Pangarkar, S.C.; Paigude, S.; Banait, S.S.; Ajani, S.N.; Mange, P.; Bramhe, M.V. Occupational Stress and Mental Health: A Longitudinal Study in High-Stress Professions. South East. Eur. J. Public Health 2023, XXI, 68–80. [Google Scholar] [CrossRef]
- Zheng, G.; Lyu, X.; Pan, L.; Chen, A. The role conflict-burnout-depression link among Chinese female health care and social service providers: The moderating effect of marriage and motherhood. BMC Public Health 2022, 22, 230. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2. [Google Scholar]
- Lemstra, M.; Neudorf, C.; D’Arcy, C.; Kunst, A.; Warren, L.M.; Bennett, N.R. A systematic review of depressed mood and anxiety by SES in youth aged 10–15 years. Can. J. Public Health 2008, 99, 125–129. [Google Scholar] [CrossRef]
- Parnia, A.; Siddiqi, A. Socioeconomic disparities in smoking are partially explained by chronic financial stress: Marginal structural model of older US adults. J. Epidemiol. Community Health 2020, 74, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Braveman, P.A.; Cubbin, C.; Egerter, S.; Williams, D.R.; Pamuk, E. Socioeconomic disparities in health in the United States: What the patterns tell us. Am. J. Public Health 2010, 100, S186–S196. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Patel, V.; Burns, J.K.; Dhingra, M.; Tarver, L.; Kohrt, B.A.; Lund, C. Income inequality and depression: A systematic review and meta-analysis of the association and a scoping review of mechanisms. World Psychiatry 2018, 17, 76–89. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-Y.; Shin, Y.-C.; Oh, K.-S.; Shin, D.-W.; Lim, W.-J.; Cho, S.J.; Jeon, S.-W. Gender and age differences in the association between work stress and incident depressive symptoms among Korean employees: A cohort study. Int. Arch. Occup. Environ. Health 2020, 93, 457–467. [Google Scholar] [CrossRef]
- Oh, B.C.; Yeon, J.-Y.; Lee, H.-S.; Lee, D.W.; Park, E.-C. Correlation between private education costs and parental depression in South Korea. BMC Public Health 2020, 20, 972. [Google Scholar] [CrossRef]
- Lee, Y. Norms about childcare, working hours, and fathers’ uptake of parental leave in South Korea. Community Work. Fam. 2023, 26, 466–491. [Google Scholar] [CrossRef]
- Kweon, S.; Kim, Y.; Jang, M.-j.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.-H.; Oh, K. Data resource profile: The Korea national health and nutrition examination survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef]
- Bambra, C. Placing intersectional inequalities in health. Health Place 2022, 75, 102761. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.; Seyedmirzaei, H.; Salehi, M.A.; Jahanshahi, A.; Zakavi, S.S.; Dehghani Firouzabadi, F.; Yousem, D.M. Brain-based sex differences in depression: A systematic review of neuroimaging studies. Brain Imaging Behav. 2023, 17, 541–569. [Google Scholar] [CrossRef] [PubMed]
- Bader, M.; Abdelwanis, M.; Maalouf, M.; Jelinek, H.F. Detecting depression severity using weighted random forest and oxidative stress biomarkers. Sci. Rep. 2024, 14, 16328. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Tlachac, M. Bayesian Optimization with Tree Ensembles to Improve Depression Screening on Textual Datasets. IEEE Trans. Affect. Comput. 2024. [Google Scholar] [CrossRef]
- Flores, R.; Tlachac, M.; Shrestha, A.; Rundensteiner, E.A. WavFace: A Multimodal Transformer-based Model for Depression Screening. IEEE J. Biomed. Health Inform. 2025. [Google Scholar] [CrossRef]
- Chen, J.; Yao, H.; Zhao, S.; Zhang, Y. Trusted commonsense knowledge enhanced depression detection based on three-way decision. Expert Syst. Appl. 2025, 263, 125671. [Google Scholar] [CrossRef]
- Thirupathi, L.; Kaashipaka, V.; Dhanaraju, M.; Katakam, V. AI and IoT in Mental Health Care: From Digital Diagnostics to Personalized, Continuous Support. In Intelligent Systems and IoT Applications in Clinical Health; IGI Global: Hershey, PA, USA, 2025; pp. 271–294. [Google Scholar]
- Liu, C.; Cheng, S.; Shi, M.; Shah, A.; Bai, W.; Arcucci, R. Imitate: Clinical prior guided hierarchical vision-language pre-training. IEEE Trans. Med. Imaging 2024, 44, 519–529. [Google Scholar] [CrossRef]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Peng, C.-Y.J.; Lee, K.L.; Ingersoll, G.M. An introduction to logistic regression analysis and reporting. J. Educ. Res. 2002, 96, 3–14. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. MLear 2001, 45, 5–32. [Google Scholar]
- Vaswani, A. Attention is all you need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Kuhn, M. Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Variš, D.; Bojar, O. Sequence length is a domain: Length-based overfitting in transformer models. arXiv 2021, arXiv:2109.07276. [Google Scholar]
- Park, Y.; Ho, J.C. Tackling overfitting in boosting for noisy healthcare data. IEEE Trans. Knowl. Data Eng. 2019, 33, 2995–3006. [Google Scholar] [CrossRef]
- King, G.; Zeng, L. Logistic regression in rare events data. Political Anal. 2001, 9, 137–163. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Liu, W.; Li, W.; Wang, Y.; Yin, C.; Xiao, C.; Hu, J.; Huang, L.; Huang, F.; Liu, H.; Chen, Y. Comparison of the EPDS and PHQ-9 in the assessment of depression among pregnant women: Similarities and differences. J. Affect. Disord. 2024, 351, 774–781. [Google Scholar] [CrossRef]
- Manea, L.; Gilbody, S.; McMillan, D. A diagnostic meta-analysis of the Patient Health Questionnaire-9 (PHQ-9) algorithm scoring method as a screen for depression. Gen. Hosp. Psychiatry 2015, 37, 67–75. [Google Scholar] [CrossRef]
- Costantini, L.; Pasquarella, C.; Odone, A.; Colucci, M.E.; Costanza, A.; Serafini, G.; Aguglia, A.; Murri, M.B.; Brakoulias, V.; Amore, M. Screening for depression in primary care with Patient Health Questionnaire-9 (PHQ-9): A systematic review. J. Affect. Disord. 2021, 279, 473–483. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Tibshirani, R.J.; Efron, B. An introduction to the bootstrap. In Monographs on Statistics and Applied Probability; Chapman & Hall: New York, NY, USA; London, UK, 1993; Volume 57, pp. 1–436. [Google Scholar]
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley: Reading, MA, USA, 1977. [Google Scholar]
- Szumilas, M. Explaining odds ratios. J. Can. Acad. Child Adolesc. Psychiatry 2010, 19, 227–229. [Google Scholar]
- Brier, G.W. Verification of forecasts expressed in terms of probability. MWRv 1950, 78, 1–3. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kai, F.Y. What’s the relative risk?: A method of correcting the odds ratio in cohort studies of common outcomes. JAMA 1998, 280, 1690–1691. [Google Scholar] [CrossRef]
- Greenland, S. Model-based estimation of relative risks and other epidemiologic measures in studies of common outcomes and in case-control studies. Am. J. Epidemiol. 2004, 160, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Norton, E.C.; Wang, H.; Ai, C. Computing interaction effects and standard errors in logit and probit models. Stata J. 2004, 4, 154–167. [Google Scholar] [CrossRef]
- Persoskie, A.; Ferrer, R.A. A most odd ratio: Interpreting and describing odds ratios. Am. J. Prev. Med. 2017, 52, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.; Harrell, F.E., Jr. Partial proportional odds models for ordinal response variables. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 1990, 39, 205–217. [Google Scholar] [CrossRef]
- Albert, P.R. Why is depression more prevalent in women? J. Psychiatry Neurosci. 2015, 40, 219–221. [Google Scholar] [CrossRef]
- Byun, S.-y.; Schofer, E.; Kim, K.-k. Revisiting the role of cultural capital in East Asian educational systems: The case of South Korea. Sociol. Educ. 2012, 85, 219–239. [Google Scholar] [CrossRef]
- Witteveen, D.; Velthorst, E. Economic hardship and mental health complaints during COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 27277–27284. [Google Scholar] [CrossRef]
- McCann, T.V.; Bamberg, J.; McCann, F. Family carers’ experience of caring for an older parent with severe and persistent mental illness. Int. J. Ment. Health Nurs. 2015, 24, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Deary, I.J.; Whiteman, M.C.; Starr, J.M.; Whalley, L.J.; Fox, H.C. The impact of childhood intelligence on later life: Following up the Scottish mental surveys of 1932 and 1947. J. Personal. Soc. Psychol. 2004, 86, 130–147. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. The odds ratio. BMJ 2000, 320, 1468. [Google Scholar] [CrossRef]
Variable | Value | Description | Count | % |
---|---|---|---|---|
year | 2014 | Year 2014 | 4247 | 17.5 |
2016 | Year 2016 | 5040 | 20.7 | |
2018 | Year 2018 | 5503 | 22.6 | |
2020 | Year 2020 | 4942 | 20.3 | |
2022 | Year 2022 | 4576 | 18.8 | |
gender | 1 | Male | 10,584 | 43.5 |
2 | Female | 13,724 | 56.5 | |
age | 1 | 19 years old | 217 | 0.9 |
2 | 20~29 years old | 2813 | 11.6 | |
3 | 30~39 years old | 3791 | 15.6 | |
4 | 40~49 years old | 4341 | 17.9 | |
5 | 50~59 years old | 4492 | 18.5 | |
6 | 60~69 years old | 4488 | 18.5 | |
7 | 70~79 years old | 3211 | 13.2 | |
8 | 80 years old or older | 955 | 3.9 | |
income_monthly | 1 | 91.92 or less Million KRW | 4722 | 19.4 |
2 | 91.93~188.08 Million KRW | 4866 | 20.0 | |
3 | 188.09~285.00 Million KRW | 4972 | 20.5 | |
4 | 285.00~423.39 Million KRW | 4862 | 20.0 | |
5 | 423.39 or more Million KRW | 4886 | 20.1 | |
number_of_family_member | 1 | 1 | 3016 | 12.4 |
2 | 2 | 7473 | 30.7 | |
3 | 3 | 6130 | 25.2 | |
4 | 4 | 5607 | 23.1 | |
5 | 5 | 1564 | 6.4 | |
6 | 6 or more | 518 | 2.1 | |
household_composition | 1 | Single-generation household: single-person | 3016 | 12.4 |
2 | Single-generation household: couple | 5763 | 23.7 | |
3 | Single-generation household: others | 354 | 1.5 | |
4 | Two-generation household: couple and unmarried children | 10,029 | 41.3 | |
5 | Two-generation household: single parent and unmarried children | 2077 | 8.5 | |
6 | Two-generation household: others | 1182 | 4.9 | |
7 | Three-generation or more household | 1887 | 7.8 | |
house_ownership_status | 1 | No property | 7502 | 30.9 |
2 | Owns one property | 13,406 | 55.2 | |
3 | Owns two or more properties | 3400 | 14.0 | |
marriage_status | 1 | Married, living together | 16,678 | 68.6 |
2 | Married, separated | 153 | 0.6 | |
3 | Widowed | 2002 | 8.2 | |
4 | Divorced | 1111 | 4.6 | |
88 | Not married | 4364 | 18.0 | |
education | 1 | Traditional Korean school | 34 | 0.1 |
2 | No formal education | 711 | 2.9 | |
3 | Elementary school | 3375 | 13.9 | |
4 | Middle school | 2517 | 10.4 | |
5 | High school | 6657 | 27.4 | |
6 | 2-year/3-year college | 3380 | 13.9 | |
7 | 4-year university | 6302 | 25.9 | |
8 | Graduate school | 1332 | 5.5 | |
education_father | 1 | Traditional Korean school | 1640 | 6.7 |
2 | No formal education | 736 | 3.0 | |
3 | Elementary school | 5096 | 21.0 | |
4 | Middle school | 2831 | 11.6 | |
5 | High school | 4631 | 19.1 | |
6 | 2-year/3-year college | 586 | 2.4 | |
7 | 4-year university | 2174 | 8.9 | |
8 | Graduate school | 509 | 2.1 | |
88 | Not applicable | 3910 | 16.1 | |
99 | Unknown | 2195 | 9.0 | |
education_mother | 1 | Traditional Korean school | 3401 | 14.0 |
2 | No formal education | 338 | 1.4 | |
3 | Elementary school | 6243 | 25.7 | |
4 | Middle school | 2732 | 11.2 | |
5 | High school | 4261 | 17.5 | |
6 | 2-year/3-year college | 459 | 1.9 | |
7 | 4-year university | 1086 | 4.5 | |
8 | Graduate school | 180 | 0.7 | |
88 | Not applicable | 3910 | 16.1 | |
99 | Unknown | 1698 | 7.0 | |
occupation | 1 | Manager | 376 | 1.5 |
2 | Professional and related worker | 4195 | 17.3 | |
3 | Office worker | 4214 | 17.3 | |
4 | Service worker | 2447 | 10.1 | |
5 | Sales worker | 2642 | 10.9 | |
6 | Skilled agricultural, forestry, and fishery worker | 1628 | 6.7 | |
7 | Craft and related trades worker | 2015 | 8.3 | |
8 | Plant, machine operator, and assembler | 1885 | 7.8 | |
9 | Elementary occupation worker | 2130 | 8.8 | |
10 | Soldier | 104 | 0.4 | |
88 | Not working | 2672 | 11.0 | |
weekly_working_hour | 1 | 9 h or less | 8755 | 36.0 |
2 | 10~19 h | 1693 | 7.0 | |
3 | 20~29 h | 1872 | 7.7 | |
4 | 30~39 h | 4981 | 20.5 | |
5 | 40~49 h | 3664 | 15.1 | |
6 | 50~59 h | 1960 | 8.1 | |
7 | 60~69 h | 823 | 3.4 | |
8 | 70~79 h | 306 | 1.3 | |
9 | 80~89 h | 173 | 0.7 | |
10 | 90~99 h | 53 | 0.2 | |
11 | 100~109 h | 17 | 0.1 | |
12 | 110~119 h | 9 | 0.0 | |
13 | 120 h or more | 2 | 0.0 | |
depression | 0~9 | Depression | 1286 | 5.3 |
10~27 | No depression | 22,940 | 94.7 |
Model | HL chi2 | HL p | Brier [95% CI] | AUC [95% CI] | Accuracy | Recall | Precision | F1 |
---|---|---|---|---|---|---|---|---|
LR | 5820.419 | 0.000 | 0.218 [0.216–0.220] | 0.686 [0.669–0.703] | 0.943 | 0.632 | 0.751 | 0.686 |
RF | 210.749 | 0.000 | 0.052 [0.050–0.054] | 0.644 [0.626–0.662] | 0.944 | 0.568 | 0.745 | 0.645 |
GB | 303.013 | 0.000 | 0.049 [0.047–0.051] | 0.686 [0.668–0.702] | 0.946 | 0.612 | 0.625 | 0.618 |
AB | 6538.749 | 0.000 | 0.235 [0.234–0.235] | 0.683 [0.667–0.697] | 0.947 | 0.605 | 0.737 | 0.665 |
DT | 85.209 | 0.000 | 0.107 [0.102–0.111] | 0.526 [0.514–0.537] | 0.893 | 0.592 | 0.749 | 0.661 |
KNN | 79.595 | 0.000 | 0.057 [0.054–0.060] | 0.553 [0.539–0.569] | 0.943 | 0.611 | 0.631 | 0.621 |
SVM | 22.707 | 0.004 | 0.050 [0.047–0.052] | 0.537 [0.517–0.556] | 0.947 | 0.632 | 0.76 | 0.69 |
NB | 376.270 | 0.000 | 0.054 [0.052–0.056] | 0.672 [0.654–0.688] | 0.938 | 0.621 | 0.685 | 0.651 |
LDA | 460.815 | 0.000 | 0.048 [0.046–0.050] | 0.684 [0.666–0.701] | 0.947 | 0.587 | 0.74 | 0.655 |
XGB | 190.165 | 0.000 | 0.054 [0.052–0.057] | 0.638 [0.623–0.655] | 0.940 | 0.614 | 0.665 | 0.638 |
TabTran | 147.099 | 0.000 | 0.131 [0.128–0.134] | 0.662 [0.660–0.664] | 0.945 | 0.625 | 0.755 | 0.684 |
TabPFN | 155.984 | 0.000 | 0.154 [0.152–0.156] | 0.614 [0.610–0.618] | 0.948 | 0.603 | 0.735 | 0.662 |
Variable | Odds Ratio | Standard Error | z-Value | p-Value |
---|---|---|---|---|
const | 0.496 | 0.284 | −2.474 | 0.013 |
gender | 1.622 | 0.067 | 7.251 | 0.000 |
age | 0.881 | 0.027 | −4.629 | 0.000 |
income_monthly | 0.832 | 0.023 | −7.969 | 0.000 |
number_of_family_member | 0.871 | 0.042 | −3.251 | 0.001 |
household_composition | 1.060 | 0.025 | 2.323 | 0.020 |
house_ownership_status | 0.749 | 0.050 | −5.736 | 0.000 |
marriage_status | 1.187 | 0.022 | 7.918 | 0.000 |
education | 0.769 | 0.028 | −9.421 | 0.000 |
education_father | 1.019 | 0.015 | 1.286 | 0.198 |
education_mother | 0.960 | 0.014 | −2.850 | 0.004 |
occupation | 0.991 | 0.011 | −0.836 | 0.403 |
weekly_working_hour | 0.994 | 0.001 | −4.533 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C. Exploring Factors Influencing Depression: Socioeconomic Perspectives Using Machine Learning Analytics. Electronics 2025, 14, 487. https://doi.org/10.3390/electronics14030487
Kim C. Exploring Factors Influencing Depression: Socioeconomic Perspectives Using Machine Learning Analytics. Electronics. 2025; 14(3):487. https://doi.org/10.3390/electronics14030487
Chicago/Turabian StyleKim, Cheong. 2025. "Exploring Factors Influencing Depression: Socioeconomic Perspectives Using Machine Learning Analytics" Electronics 14, no. 3: 487. https://doi.org/10.3390/electronics14030487
APA StyleKim, C. (2025). Exploring Factors Influencing Depression: Socioeconomic Perspectives Using Machine Learning Analytics. Electronics, 14(3), 487. https://doi.org/10.3390/electronics14030487