Accessible and Inexpensive Parameter Testing Platform for Adhesive Removal in Mechanical Exfoliation Procedures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background
2.2. System Description
2.3. Software Design
2.3.1. Speed Control
2.3.2. Calculating Peel Speed
2.4. Angle Control
3. Results
Limitations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, T.; Ryu, Y.K.; Frisenda, R.; Castellanos-Gomez, A. An inexpensive system for the deterministic transfer of 2D materials. J. Phys. Mater. 2020, 3, 016001. [Google Scholar] [CrossRef]
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50. [Google Scholar] [CrossRef]
- Sulleiro, M.V.; Dominguez-Alfaro, A.; Alegret, N.; Silvestri, A.; Gómez, I.J. 2D Materials towards sensing technology: From fundamentals to applications. Sens. Bio-Sens. Res. 2022, 38, 100540. [Google Scholar] [CrossRef]
- Huffstutler, J.D.; Wasala, M.; Richie, J.; Barron, J.; Winchester, A.; Ghosh, S.; Yang, C.; Xu, W.; Song, L.; Kar, S.; et al. High Performance Graphene-Based Electrochemical Double Layer Capacitors Using 1-Butyl-1-methylpyrrolidinium tris (pentafluoroethyl) trifluorophosphate Ionic Liquid as an Electrolyte. Electronics 2018, 7, 229. [Google Scholar] [CrossRef]
- Planillo, J.; Alves, F. Fabrication and Characterization of Micrometer Scale Graphene Structures for Large-Scale Ultra-Thin Electronics. Electronics 2022, 11, 752. [Google Scholar] [CrossRef]
- Huang, Y.; Pan, Y.H.; Yang, R.; Bao, L.H.; Meng, L.; Luo, H.L.; Cai, Y.Q.; Liu, G.D.; Zhao, W.J.; Zhou, Z.; et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 2020, 11, 2453. [Google Scholar] [CrossRef] [PubMed]
- Gao, E.; Lin, S.Z.; Qin, Z.; Buehler, M.J.; Feng, X.Q.; Xu, Z. Mechanical exfoliation of two-dimensional materials. J. Mech. Phys. Solids 2018, 115, 248–262. [Google Scholar] [CrossRef]
- Ariana Tantillo. Brookhaven National Laboratory. Available online: https://www.bnl.gov/newsroom/news.php?a=217449 (accessed on 20 August 2024).
- Courtney, E.D.S.; Pendharkar, M.; Bittner, N.J.; Sharpe, A.L.; Goldhaber-Gordon, D. Automated Tabletop Exfoliation and Identification of Monolayer Graphene Flakes. arXiv 2024, arXiv:2403.12901. [Google Scholar]
- Li, Y.; Kuang, G.; Jiao, Z.; Yao, L.; Duan, R. Recent progress on the mechanical exfoliation of 2D transition metal dichalcogenides. Mater. Res. Express 2022, 9, 122001. [Google Scholar] [CrossRef]
- Polichetti, T.; Miglietta, M.L.; Francia, G. Overview on graphene: Properties, fabrication and applications. Chim. Oggi 2010, 28, 6–9. [Google Scholar]
- Huang, P.; Ruiz-Vargas, C.; Zande, A.; Whitney, W.; Levendorf, M.; Kevek, J.; Garg, S.; Alden, J.; Hustedt, C.; Zhu, Y.; et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Tang, Q.; Huang, B.; Wang, Y. Graphene Synthesis: Method, Exfoliation Mechanism and Large-Scale Production. Crystals 2022, 12, 25. [Google Scholar] [CrossRef]
- Kim, K.; Lee, D.; Chang, C.; Seo, S.; Hu, Y.; Cha, S.; Kim, H.; Shin, J.; Lee, J.-H.; Lee, S.; et al. Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature 2023, 614, 88–94. [Google Scholar] [CrossRef]
- Huang, Y.; Sutter, E.; Shi, N.N.; Zheng, J.; Yang, T.; Englund, D.; Gao, H.J.; Sutter, P. Reliable Exfoliation of Large-Area High-Quality Flakes of Graphene and Other Two-Dimensional Materials. ACS Nano 2015, 9, 10612–10620. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Serles, P.; Kumral, B.; Demingos, P.G.; Qureshi, T.; Meiyazhagan, A.; Puthirath, A.B.; Abdullah, M.S.B.; Faysal, S.R.; Ajayan, P.M.; et al. Exfoliation mechanisms of 2D materials and their applications. Appl. Phys. Rev. 2022, 9, 041301. [Google Scholar] [CrossRef]
- Davydov, A.; Krylyuk, S.; DiCamillo, K.; Paranjape, M.; Shi, W. Automated Mechanical Exfoliation of MoS2 and MoTe2 Layers for 2D Materials Applications. IEEE Trans. Nanotechnol. 2019, 18, 144–148. [Google Scholar]
- Tsaur, B.; Allen, R. Post-Si Technologies: Emerging Technologies Driving The Future of Semiconductors. Ph.D. Thesis, University of London, London, UK, 2003. [Google Scholar]
Component | Description | Distributor (Accessed on 10 June 2024) | Price (US$) |
---|---|---|---|
Motor Control System | Arduino UNO R3 | Amazon | $13.59 |
Arduino expansion board | CNC shield expansion | Amazon | $7.99 |
Stepper motor driver | TMC2209 V1.3 | Amazon | $29.99 |
Linear actuator and motor | 600 mm Linear Stage | Amazon | $198.00 |
Power Supply 1 | DC Power Supply | Amazon | $49.49 |
3D printer 2 | Creality Ender 3 V2 | Amazon | $179.99 |
Wiring | 22 AWG Wire, Solid Core | Amazon | $15.19 |
Limit Switches | Micro Limit Switches | Amazon | $14.99 |
3D printer Filament | PLA+ Filament | Amazon | $31.44 |
Set Speed (mm/s) | Micro Steps 2 (Subdivisions) | Measured Time (s) | Actual Speed (mm/s) | Speed Error (mm/s) | Relative Speed Error (%) |
---|---|---|---|---|---|
5.00 | 0 | 40.12 | 4.99 | 0.0150 | 0.30 |
1.00 | 0 | 199.87 | 1.00 | −0.0007 | −0.07 |
0.50 | 16 | 402.59 | 0.50 | 0.0032 | 0.64 |
0.10 | 128 | 2012 | 0.10 | 0.0150 | 0.60 |
0.01 | 256 | 20009 | 0.01 | 0.0000 | 0.04 |
0.001 | 256 | 199813 | 0.00 | 0.0000 | −0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasbarro, A.; Masuda, Y.-S.D.; Ordonez, R.C.; Weldon, J.A.; Lubecke, V.M. Accessible and Inexpensive Parameter Testing Platform for Adhesive Removal in Mechanical Exfoliation Procedures. Electronics 2025, 14, 533. https://doi.org/10.3390/electronics14030533
Gasbarro A, Masuda Y-SD, Ordonez RC, Weldon JA, Lubecke VM. Accessible and Inexpensive Parameter Testing Platform for Adhesive Removal in Mechanical Exfoliation Procedures. Electronics. 2025; 14(3):533. https://doi.org/10.3390/electronics14030533
Chicago/Turabian StyleGasbarro, Anthony, Yong-Sung D. Masuda, Richard C. Ordonez, Jeffrey A. Weldon, and Victor M. Lubecke. 2025. "Accessible and Inexpensive Parameter Testing Platform for Adhesive Removal in Mechanical Exfoliation Procedures" Electronics 14, no. 3: 533. https://doi.org/10.3390/electronics14030533
APA StyleGasbarro, A., Masuda, Y.-S. D., Ordonez, R. C., Weldon, J. A., & Lubecke, V. M. (2025). Accessible and Inexpensive Parameter Testing Platform for Adhesive Removal in Mechanical Exfoliation Procedures. Electronics, 14(3), 533. https://doi.org/10.3390/electronics14030533