Stroke Detection and Monitoring by Means of a Multifrequency Microwave Inversion Approach
Abstract
:1. Introduction
2. Formulation of the Imaging Method
2.1. Definition of the Inverse Problem
2.2. Inversion Procedure
Algorithm 1. Inexact-Newton method. | |||
Inputs: , , ,, | |||
1.1: | , | ||
1.2: | for | ||
1.3: | |||
1.4: | Algorithm 2 ( | ||
1.5: | |||
1.6: | |||
1.7: | if stop criterion is satisfied then | ||
1.8: | Break | ||
1.9: | End | ||
1.10: | end | ||
Output: |
Algorithm 2. Landweber-like regularization method. | |||
Inputs: , , | |||
2.1: | |||
2.2: | |||
2.3: | |||
2.4: | |||
2.5: | then | ||
2.6: | break | ||
2.7: | end | ||
2.8: | End | ||
3. Results
3.1. Numerical Results with Realistic Stroke Models
3.2. Experimental Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 25 July 2022).
- Johnson, C.O.; Nguyen, M.; Roth, G.A.; Nichols, E.; Alam, T.; Abate, D.; Abd-Allah, F.; Abdelalim, A.; Abraha, H.N.; Abu-Rmeileh, N.M.; et al. Global, Regional, and National Burden of Stroke, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 439–458. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, W.; Liu, X.; Dai, M.; Xuan, Q.; Dong, X.; Liu, R.; Xu, C. Multifrequency Magnetic Induction Tomography for Hemorrhagic Stroke Detection Using an Adaptive Threshold Split Bregman Algorithm. IEEE Trans. Instrum. Meas. 2022, 71, 4005713. [Google Scholar] [CrossRef]
- Shi, Y.; Tian, Z.; Wang, M.; Wu, Y.; Yang, B.; Fu, F. Residual Convolutional Neural Network-Based Stroke Classification with Electrical Impedance Tomography. IEEE Trans. Instrum. Meas. 2022, 71, 4502911. [Google Scholar] [CrossRef]
- Mohammed, B.J.; Abbosh, A.M.; Mustafa, S.; Ireland, D. Microwave System for Head Imaging. IEEE Trans. Instrum. Meas. 2014, 63, 117–123. [Google Scholar] [CrossRef]
- Semenov, S.Y.; Corfield, D.R. Microwave Tomography for Brain Imaging: Feasibility Assessment for Stroke Detection. Int. J. Antennas Propag. 2008, 2008, 254830. [Google Scholar] [CrossRef]
- Tournier, P.-H.; Bonazzoli, M.; Dolean, V.; Rapetti, F.; Hecht, F.; Nataf, F.; Aliferis, I.; El Kanfoud, I.; Migliaccio, C.; de Buhan, M.; et al. Numerical Modeling and High-Speed Parallel Computing: New Perspectives on Tomographic Microwave Imaging for Brain Stroke Detection and Monitoring. IEEE Antennas Propag. Mag. 2017, 59, 98–110. [Google Scholar] [CrossRef]
- Fhager, A.; Candefjord, S.; Elam, M.; Persson, M. Microwave Diagnostics Ahead: Saving Time and the Lives of Trauma and Stroke Patients. IEEE Microw. Mag. 2018, 19, 78–90. [Google Scholar] [CrossRef]
- Pastorino, M.; Randazzo, A. Microwave Imaging Methods and Applications; Artech House: Boston, MA, USA, 2018; ISBN 978-1-63081-348-2. [Google Scholar]
- Crocco, L.; Karanasiou, I.; James, M.; Conceição, R.C. Emerging Electromagnetic Technologies for Brain Diseases Diagnostics, Monitoring and Therapy; Springer: Cham, Switzerland, 2018; ISBN 978-3-319-75006-4. [Google Scholar]
- Bisio, I.; Estatico, C.; Fedeli, A.; Lavagetto, F.; Pastorino, M.; Randazzo, A.; Sciarrone, A. Brain Stroke Microwave Imaging by Means of a Newton-Conjugate-Gradient Method in Lp Banach Spaces. IEEE Trans. Microw. Theory Tech. 2018, 66, 3668–3682. [Google Scholar] [CrossRef]
- Guo, L.; Alqadami, A.S.M.; Abbosh, A. Stroke Diagnosis Using Microwave Techniques: Review of Systems and Algorithms. IEEE J. Electromagn. RF Microw. Med. Biol. 2023, 7, 122–135. [Google Scholar] [CrossRef]
- Fedeli, A.; Schenone, V.; Randazzo, A.; Pastorino, M.; Henriksson, T.; Semenov, S. Nonlinear S-Parameters Inversion for Stroke Imaging. IEEE Trans. Microw. Theory Tech. 2021, 69, 1760–1771. [Google Scholar] [CrossRef]
- Ghavami, N.; Razzicchia, E.; Karadima, O.; Lu, P.; Guo, W.; Sotiriou, I.; Kallos, E.; Palikaras, G.; Kosmas, P. The Use of Metasurfaces to Enhance Microwave Imaging: Experimental Validation for Tomographic and Radar-Based Algorithms. IEEE Open J. Antennas Propag. 2022, 3, 89–100. [Google Scholar] [CrossRef]
- Stancombe, A.E.; Bialkowski, K.S.; Abbosh, A.M. Portable Microwave Head Imaging System Using Software-Defined Radio and Switching Network. IEEE J. Electromagn. RF Microw. Med. Biol. 2019, 3, 284–291. [Google Scholar] [CrossRef]
- Kiourti, A.; Abbosh, A.M.; Athanasiou, M.; Björninen, T.; Eid, A.; Furse, C.; Ito, K.; Lazzi, G.; Manoufali, M.; Pastorino, M.; et al. Next-Generation Healthcare: Enabling Technologies for Emerging Bioelectromagnetics Applications. IEEE Open J. Antennas Propag. 2022, 3, 363–390. [Google Scholar] [CrossRef]
- Henriksson, T.; Sahebdivan, S.; Planas, R.; Brunner, C.; Kellermair, L.; Guger, M.; Struhal, W.; Fuchs, P.; Reichl, J.; Stelzer, A.; et al. Human Brain Imaging by Electromagnetic Tomography: A Mobile Brain Scanner for Clinical Settings. In Proceedings of the 16th European Conference on Antennas and Propagation, Madrid, Spain, 27 March–1 April 2022; pp. 1–5. [Google Scholar]
- Shahidul Islam, M.; Islam, M.T.; Hoque, A.; Islam, M.T.; Amin, N.; Chowdhury, M.E.H. A Portable Electromagnetic Head Imaging System Using Metamaterial Loaded Compact Directional 3D Antenna. IEEE Access 2021, 9, 50893–50906. [Google Scholar] [CrossRef]
- Zhu, G.; Bialkowski, A.; Guo, L.; Mohammed, B.; Abbosh, A. Stroke Classification in Simulated Electromagnetic Imaging Using Graph Approaches. IEEE J. Electromagn. RF Microw. Med. Biol. 2021, 5, 46–53. [Google Scholar] [CrossRef]
- Trakic, A.; Brankovic, A.; Zamani, A.; Nguyen-Trong, N.; Mohammed, B.; Stancombe, A.; Guo, L.; Bialkowski, K.; Abbosh, A. Expedited Stroke Imaging with Electromagnetic Polar Sensitivity Encoding. IEEE Trans. Antennas Propag. 2020, 68, 8072–8081. [Google Scholar] [CrossRef]
- Rodriguez-Duarte, D.O.; Origlia, C.; Vasquez, J.A.T.; Scapaticci, R.; Crocco, L.; Vipiana, F. Experimental Assessment of Real-Time Brain Stroke Monitoring via a Microwave Imaging Scanner. IEEE Open J. Antennas Propag. 2022, 3, 824–835. [Google Scholar] [CrossRef]
- Al-Saffar, A.; Guo, L.; Abbosh, A. Graph Attention Network in Microwave Imaging for Anomaly Localization. IEEE J. Electromagn. RF Microw. Med. Biol. 2022, 6, 212–218. [Google Scholar] [CrossRef]
- Dvorsky, M.; Munalli, D.; Qaseer, M.T.A.; Zoughi, R. Application of Microwave Polarimetry to the Characterization of Fiber Misalignment in Composites. IEEE Open J. Instrum. Meas. 2022, 1, 8000209. [Google Scholar] [CrossRef]
- Lai, W.; Guo, L.; Bialkowski, K.; Bialkowski, A. An Explainable Deep Learning Method for Microwave Head Stroke Localization. IEEE J. Electromagn. RF Microw. Med. Biol. 2023, 7, 336–343. [Google Scholar] [CrossRef]
- Zhu, G.; Bialkowski, A.; Crozier, S.; Guo, L.; Nguyen, P.T.; Stancombe, A.E.; Abbosh, A. Brain Injury Localization and Size Estimation Using Electromagnetic Symmetric Crossing Lines Method. IEEE Trans. Instrum. Meas. 2023, 72, 2521011. [Google Scholar] [CrossRef]
- Laviada, J.; Ghasr, M.T.; Lopez-Portugues, M.; Las-Heras, F.; Zoughi, R. Real-Time Multiview SAR Imaging Using a Portable Microwave Camera With Arbitrary Movement. IEEE Trans. Antennas Propag. 2018, 66, 7305–7314. [Google Scholar] [CrossRef]
- Hopfer, M.; Planas, R.; Hamidipour, A.; Henriksson, T.; Semenov, S. Electromagnetic Tomography for Detection, Differentiation, and Monitoring of Brain Stroke: A Virtual Data and Human Head Phantom Study. IEEE Antennas Propag. Mag. 2017, 59, 86–97. [Google Scholar] [CrossRef]
- Bevacqua, M.T.; Bellizzi, G.G.; Isernia, T.; Crocco, L. A Method for Effective Permittivity and Conductivity Mapping of Biological Scenarios via Segmented Contrast Source Inversion. Prog. Electromagn. Res. 2019, 164, 1–15. [Google Scholar] [CrossRef]
- Karadima, O.; Lu, P.; Sotiriou, I.; Kosmas, P. Experimental Validation of the DBIM-TwIST Algorithm for Brain Stroke Detection and Differentiation Using a Multi-Layered Anatomically Complex Head Phantom. IEEE Open J. Antennas Propag. 2022, 3, 274–286. [Google Scholar] [CrossRef]
- Merunka, I.; Massa, A.; Vrba, D.; Fiser, O.; Salucci, M.; Vrba, J. Microwave Tomography System for Methodical Testing of Human Brain Stroke Detection Approaches. Int. J. Antennas Propag. 2019, 2019, e4074862. [Google Scholar] [CrossRef]
- Coli, V.L.; Tournier, P.-H.; Dolean, V.; Kanfoud, I.E.; Pichot, C.; Migliaccio, C.; Blanc-Féraud, L. Detection of Simulated Brain Strokes Using Microwave Tomography. IEEE J. Electromagn. RF Microw. Med. Biol. 2019, 3, 254–260. [Google Scholar] [CrossRef]
- Mariano, V.; Tobon Vasquez, J.A.; Vipiana, F. A Novel Discretization Procedure in the CSI-FEM Algorithm for Brain Stroke Microwave Imaging. Sensors 2023, 23, 11. [Google Scholar] [CrossRef]
- Guo, L.; Nguyen-Trong, N.; AI-Saffar, A.; Stancombe, A.; Bialkowski, K.; Abbosh, A. Calibrated Frequency-Division Distorted Born Iterative Tomography for Real-Life Head Imaging. IEEE Trans. Med. Imaging 2022, 41, 1087–1103. [Google Scholar] [CrossRef]
- Guo, R.; Lin, Z.; Xin, J.; Li, M.; Yang, F.; Xu, S.; Abubakar, A. Three Dimensional Microwave Data Inversion in Feature Space for Stroke Imaging. IEEE Trans. Med. Imaging 2023, 43, 1365–1376. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.S.S.; Majedi, M.S. A Modified Microwave Imaging Method for Brain Stroke Detection. IEEE Trans. Antennas Propag. 2023, 72, 890–900. [Google Scholar] [CrossRef]
- Bisio, I.; Estatico, C.; Fedeli, A.; Lavagetto, F.; Pastorino, M.; Randazzo, A.; Sciarrone, A. Variable-Exponent Lebesgue-Space Inversion for Brain Stroke Microwave Imaging. IEEE Trans. Microw. Theory Tech. 2020, 68, 1882–1895. [Google Scholar] [CrossRef]
- Ahsan, S.; Guo, Z.; Miao, Z.; Sotiriou, I.; Koutsoupidou, M.; Kallos, E.; Palikaras, G.; Kosmas, P. Design and Experimental Validation of a Multiple-Frequency Microwave Tomography System Employing the DBIM-TwIST Algorithm. Sensors 2018, 18, 3491. [Google Scholar] [CrossRef]
- Bucci, O.M.; Crocco, L.; Isernia, T.; Pascazio, V. Inverse Scattering Problems with Multifrequency Data: Reconstruction Capabilities and Solution Strategies. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1749–1756. [Google Scholar] [CrossRef]
- Qiu, C.; Liang, B.; Han, F.; Liu, H.; Zhu, C.; Liu, N.; Liu, F.; Fang, G.; Liu, Q.H. Multifrequency 3-D Inversion of GREATEM Data by BCGS-FFT-BIM. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2439–2448. [Google Scholar] [CrossRef]
- Fang, Y.; Bakian-Dogaheh, K.; Moghaddam, M. A Multifrequency Inverse Algorithm for 3-D Microwave Imaging. IEEE Trans. Antennas Propag. 2023, 71, 9136–9141. [Google Scholar] [CrossRef]
- Abubakar, A.; Habashy, T.M.; Druskin, V.L.; Knizhnerman, L. An Enhanced Gauss-Newton Inversion Algorithm Using a Dual-Optimal Grid Approach. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1419–1427. [Google Scholar] [CrossRef]
- Mojabi, P.; LoVetri, J. A Prescaled Multiplicative Regularized Gauss-Newton Inversion. IEEE Trans. Antennas Propag. 2011, 59, 2954–2963. [Google Scholar] [CrossRef]
- De Zaeytijd, J.; Franchois, A.; Eyraud, C.; Geffrin, J.-M. Full-Wave Three-Dimensional Microwave Imaging with a Regularized Gauss-Newton Method—Theory and Experiment. IEEE Trans. Antennas Propag. 2007, 55, 3279–3292. [Google Scholar] [CrossRef]
- Schenone, V.; Fedeli, A.; Estatico, C.; Bisio, I.; Lavagetto, F.; Sciarrone, A.; Pastorino, M.; Randazzo, A. A Multifrequency Electromagnetic Imaging Approach for the Detection of Brain Injuries. In Proceedings of the 2023 17th European Conference on Antennas and Propagation (EuCAP), Florence, Italy, 26–31 March 2023; pp. 1–5. [Google Scholar]
- Fedeli, A.; Maheswaran, M.; Schenone, V.; Sciarrone, A.; Bisio, I.; Lavagetto, F.; Pastorino, M.; Randazzo, A.; Estatico, C. A Multifrequency Inverse-Scattering Technique for Brain Stroke Microwave Diagnostics. In Proceedings of the 2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), Milano, Italy, 25–27 October 2023; pp. 502–506. [Google Scholar]
- Liew, S.-L.; Anglin, J.M.; Banks, N.W.; Sondag, M.; Ito, K.L.; Kim, H.; Chan, J.; Ito, J.; Jung, C.; Khoshab, N.; et al. A Large, Open Source Dataset of Stroke Anatomical Brain Images and Manual Lesion Segmentations. Sci. Data 2018, 5, 180011. [Google Scholar] [CrossRef] [PubMed]
- Fedeli, A.; Estatico, C.; Pastorino, M.; Randazzo, A. Microwave Detection of Brain Injuries by Means of a Hybrid Imaging Method. IEEE Open J. Antennas Propag. 2020, 1, 513–523. [Google Scholar] [CrossRef]
- Estatico, C.; Fedeli, A.; Pastorino, M.; Randazzo, A. Quantitative Microwave Imaging Method in Lebesgue Spaces with Nonconstant Exponents. IEEE Trans. Antennas Propag. 2018, 66, 7282–7294. [Google Scholar] [CrossRef]
- Warren, C.; Giannopoulos, A.; Giannakis, I. gprMax: Open Source Software to Simulate Electromagnetic Wave Propagation for Ground Penetrating Radar. Comput. Phys. Commun. 2016, 209, 163–170. [Google Scholar] [CrossRef]
- Massey, J.W.; Yilmaz, A.E. AustinMan and AustinWoman: High-Fidelity, Anatomical Voxel Models Developed from the VHP Color Images. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, FL, USA, 16–20 August 2016; pp. 3346–3349. [Google Scholar]
- Fujii, M. Maximum Frequency Range Limit of Multi-Pole Debye Models of Human Body Tissues. IEEE Microw. Wirel. Compon. Lett. 2012, 22, 73–75. [Google Scholar] [CrossRef]
- Mustafa, S.; Abbosh, A.M.; Nguyen, P.T. Modeling Human Head Tissues Using Fourth-Order Debye Model in Convolution-Based Three-Dimensional Finite-Difference Time-Domain. IEEE Trans. Antennas Propag. 2014, 62, 1354–1361. [Google Scholar] [CrossRef]
- Meaney, P.M.; Fox, C.J.; Geimer, S.D.; Paulsen, K.D. Electrical Characterization of Glycerin: Water Mixtures: Implications for Use as a Coupling Medium in Microwave Tomography. IEEE Trans. Microw. Theory Tech. 2017, 65, 1471–1478. [Google Scholar] [CrossRef]
Operating Frequencies | Stroke #1 | Stroke #2 | ||
---|---|---|---|---|
600 MHz | 4.26% | 3.02% | 7.34% | 5.74% |
{600, 750, 900} MHz | 3.37% | 2.36% | 6.90% | 5.65% |
{600, 700, 800, 900} MHz | 3.12% | 2.12% | 6.10% | 4.87% |
{600, 650, 700, 750, 800, 850, 900} MHz | 3.73% | 2.87% | 6.52% | 5.42% |
Operating Frequencies | ||
600 MHz | 3.55% | 3.09% |
{600, 750, 900} MHz | 1.78% | 1.37% |
{600, 700, 800, 900} MHz | 2.31% | 1.97% |
{600, 650, 700, 750, 800, 850, 900} MHz | 2.06% | 1.73% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedeli, A.; Schenone, V.; Estatico, C.; Randazzo, A. Stroke Detection and Monitoring by Means of a Multifrequency Microwave Inversion Approach. Electronics 2025, 14, 543. https://doi.org/10.3390/electronics14030543
Fedeli A, Schenone V, Estatico C, Randazzo A. Stroke Detection and Monitoring by Means of a Multifrequency Microwave Inversion Approach. Electronics. 2025; 14(3):543. https://doi.org/10.3390/electronics14030543
Chicago/Turabian StyleFedeli, Alessandro, Valentina Schenone, Claudio Estatico, and Andrea Randazzo. 2025. "Stroke Detection and Monitoring by Means of a Multifrequency Microwave Inversion Approach" Electronics 14, no. 3: 543. https://doi.org/10.3390/electronics14030543
APA StyleFedeli, A., Schenone, V., Estatico, C., & Randazzo, A. (2025). Stroke Detection and Monitoring by Means of a Multifrequency Microwave Inversion Approach. Electronics, 14(3), 543. https://doi.org/10.3390/electronics14030543