Optimization of Artificial Intelligence Algorithm Selection: PIPRECIA-S Model and Multi-Criteria Analysis
Abstract
:1. Introduction
2. Current State of the Art
3. Methodology and Materials
3.1. Simplified Method for Assessing the Relative Importance of Criteria (PIPRECIA-S)
3.2. Evaluation of Criteria
- Efficiency—This criterion evaluates how quickly and accurately the algorithm can solve a given problem. This includes the analysis of execution time, as well as precision in achieving set goals [54].
- Flexibility—This criterion focuses on the algorithm’s ability to adapt to different tasks and conditions, which is especially important in dynamic environments [55].
- Ease of implementation—This criterion assesses how easy it is to implement and integrate the algorithm into existing systems, taking into account the availability of libraries and resources [56].
- Stability—This criterion refers to the consistency of the algorithm’s performance in different scenarios and on different datasets. Algorithms that show stable results are usually preferred [57].
- Scalability—This criterion evaluates how the algorithm behaves when faced with an increase in the volume of data. Algorithms that retain efficiency with larger datasets are essential for practical application [58].
3.3. Ranking Scale
3.4. Setting Priorities in Criteria
- Initial evaluation of criteria: Each expert assigned scores to the importance of the criteria using the PIPRECIA-S model scale.
- Calculation of average values: The average score of each criterion was used as the initial weight.
- Discussion among experts: Experts reviewed the results and proposed potential adjustments based on the aggregated data.
- Iteration: The process was repeated until consensus was achieved on the criteria weights.
- Final weight determination: The consensus-based weights were used for ranking the algorithms.
4. Analysis of Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, D.; Yoon, S.N. Application of artificial intelligence-based technologies in the healthcare industry: Opportunities and challenges. Int. J. Environ. Res. Public Health 2021, 18, 271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Al Hamadi, H.; Damiani, E.; Yeun, C.Y.; Taher, F. Explainable artificial intelligence applications in cyber security: State-of-the-art in research. IEEE Access 2022, 10, 93104–93139. [Google Scholar] [CrossRef]
- Chakraborty, U. Artificial Intelligence for All: Transforming Every Aspect of Our Life, 1st ed.; BPB publications: Noida, India, 2020. [Google Scholar]
- Al Ka’bi, A. Proposed artificial intelligence algorithm and deep learning techniques for development of higher education. Int. J. Intell. Netw. 2023, 4, 68–73. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Williams, M.D. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 2021, 57, 101994. [Google Scholar] [CrossRef]
- Zopounidis, C.; Doumpos, M. Multicriteria classification and sorting methods: A literature review. Eur. J. Oper. Res. 2002, 138, 229–246. [Google Scholar] [CrossRef]
- Liu, H.; Yu, L. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 2005, 17, 491–502. [Google Scholar] [CrossRef]
- Soni, K.M.; Gupta, A.; Jain, T. Supervised machine learning approaches for breast cancer classification and a high performance recurrent neural network. In Proceedings of the Third International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 2–4 September 2021. [Google Scholar] [CrossRef]
- Elyan, E.; Vuttipittayamongkol, P.; Johnston, P.; Martin, K.; McPherson, K.; Moreno-Garcia, C.; Jayne, C.; Sarker, M.; Mostafa, K. Computer vision and machine learning for medical image analysis: Recent advances, challenges, and way forward. Artif. Intell. Surg. 2022, 2, 24–45. [Google Scholar] [CrossRef]
- Nabipour, M.; Nayyeri, P.; Jabani, H.; Band, S.; Mosavi, A. Predicting stock market trends using machine learning and deep learning algorithms via continuous and binary data; a comparative analysis. IEEE Access 2020, 8, 150199–150212. [Google Scholar] [CrossRef]
- Maksimović, S.; Dimić, V. Multi-criteria analysis of ICT implementation in investment projects: Case Study of construction companies in the Republic of Serbia. MB Univ. Int. Rev. MBUIR 2023, 1, 57–67. [Google Scholar]
- Jato-Espino, D.; Castillo-Lopez, E.; Rodriguez-Hernandez, J.; Canteras-Jordana, J. A review of application of multi-criteria decision making methods in construction. Autom. Constr. 2014, 45, 151–162. [Google Scholar] [CrossRef]
- Yalcin, A.S.; Huseyin, S.K.; Dursun, D. The use of multi-criteria decision-making methods in business analytics: A comprehensive literature review. Technol. Forecast. Soc. Change 2022, 174, 121193. [Google Scholar] [CrossRef]
- Rahman, S.; Mehedi, H.; Ajay, K.S. Prediction of brain stroke using machine learning algorithms and deep neural network techniques. Eur. J. Electr. Eng. Comput. Sci. 2023, 7, 23–30. [Google Scholar] [CrossRef]
- Hamon, R.; Junklewitz, H.; Sanchez, I. Robustness and Explainability of Artificial Intelligence; Publications Office of the European Union: Luxembourg, 2020; Volume 207. [Google Scholar] [CrossRef]
- Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A review of machine learning interpretability methods. Entropy 2020, 23, 18. [Google Scholar] [CrossRef] [PubMed]
- Tanveer, H.; Adam, M.; Khan, M.; Ali, M. Analyzing the Performance and Efficiency of Machine Learning Algorithms, such as Deep Learning, Decision Trees, or Support Vector Machines, on Various Datasets and Applications. Asian Bull. Big Data Manag. 2023, 3, 126–136. [Google Scholar] [CrossRef]
- Dang, L.M.; Wang, H.; Li, Y.; Nguyen, T. Explainable artificial intelligence: A comprehensive review. Artif. Intell. Rev. 2022, 55, 3503–3568. Available online: https://link.springer.com/article/10.1007%2Fs10462-021-10088-y (accessed on 15 September 2024).
- Diogo, C.V.; Pereira, E.M.; Cardoso, J.S. Machine learning interpretability: A survey on methods and metrics. Electronics 2019, 8, 832. [Google Scholar] [CrossRef]
- Stanujkić, M.; Popović, G.; Karabašević, D.; Šarčević, M.; Stanujkić, D.; Novaković, S. Approach to the personnel selection in a group decision-making environment based on the use of the MULTIMOORA and PIPRECIA-S methods. BizInfo (Blace) J. Econ. Manag. Inform. 2024, 15, 19–26. [Google Scholar] [CrossRef]
- Popović, S.; Djukić, D.; Djukić Popović, S.; Gligorijević, M. Neural networks in pellet combustion control—an overview of the group’s research work in 2022/2023. In Proceedings of the 9th Virtual International Conference on Science, Technology and Management in Energy, Belgrade, Serbia, 23–24 November 2023; ISBN 978-86-82602-03-3. [Google Scholar]
- Popović, S.; Djukić, D.; Djukić Popović, S.; Kopanja, L. Preliminary Research on the Application of Neural Networks to the Combustion Control of Boilers with Automatic Firing. In Proceedings of the 8th Virtual International Conference on Science Technology and Management in Energy, Belgrade, Serbia, 26–28 January 2023; ISBN 978-86-82602-01-9. [Google Scholar]
- Popović, S.; Djukic Popovic, S.; Djukić, D.; Gligorijević, M. Genetic algorithms and machine learning as the basis of all implemented solutions in smart cities. In Proceedings of the International Scientific Conference–ALFATECH–Smart Cities and modern technologies, Belgrade, Serbia, 15 April 2024; ISBN 978-86-6461-074-2. [Google Scholar]
- Milošević, M.; Milošević, D.; Dimić, V. Application of Fuzzy AHP Approach for Designing Model of Smart City Development. In Proceedings of the International Scientific Conference–ALFATECH–Smart Cities and modern technologies, Belgrade, Serbia, 15 April 2024; ISBN 978-86-6461-074-2. [Google Scholar]
- Setiawansyah, M.K.; Sanrimi, S.; Ahmad, A.A. MCDM Using Multi-Attribute Utility Theory and PIPRECIA in Customer Loan Eligibility Recommendations. J. Inform. Electr. Electron. Eng. 2023, 3, 212–220. [Google Scholar] [CrossRef]
- Samoili, S.; Cobo, M.L.; Gómez, E.; De Prato, G.; Martínez-Plumed, F.; Delipetrev, B. AI Watch. Defining Artificial Intelligence. Towards an Operational Definition and Taxonomy of Artificial Intelligence; Publications Office of the European Union: Luxembourg, 2021; ISBN 978-92-76-42648-6. [Google Scholar] [CrossRef]
- Raghuwanshi, B.S.; Sanyam, S. Classifying imbalanced data using BalanceCascade-based kernelized extreme learning machine. Pattern Anal. Appl. 2020, 23, 1157–1182. Available online: https://link.springer.com/article/10.1007/s10044-019-00844-w (accessed on 10 September 2024). [CrossRef]
- Bringsjord, S.; Govindarajulu, N.S. Artificial intelligence. In The Stanford Encyclopedia of Philosophy, Fall 2024 ed.; Zalta, E.N., Nodelman, U., Eds.; Stanford University: Stanford, CA, USA, 2024; Available online: https://plato.stanford.edu/archives/fall2024/entries/artificial-intelligence/ (accessed on 20 August 2024).
- Verma, M. Artificial intelligence role in modern science: Aims, merits, risks and its applications. Int. J. Trend Sci. Res. Dev. (IJTSRD) 2023, 7, 335–342. [Google Scholar]
- Macpherson, T.; Churchland, A.; Sejnowski, T.; DiCarlo, J.; Kamitani, Y.; Takahashi, H.; Hikida, T. Natural and Artificial Intelligence: A brief introduction to the interplay between AI and neuroscience research. Neural Netw. 2021, 144, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Zheng, J.; Wu, L.; Zhang, F. Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural networks models. Agric. Water Manag. 2021, 245, 106547. [Google Scholar] [CrossRef]
- Justin, K.; Lipo, W.; Jai, R.; Tchoyoson, L. Deep learning applications in medical image analysis. IEEE Access 2018, 6, 9375–9389. [Google Scholar]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Umar, A.B.; Linus, O.U.; Arshad, H.; Kazaure, A.A.; Gana, U.; Kiru, M.U. Comprehensive review of artificial neural network applications to pattern recognition. IEEE Access 2019, 7, 158820–158846. [Google Scholar] [CrossRef]
- Yang, L. Artificial intelligence: A survey on evolution, models, applications and future trends. J. Manag. Anal. 2019, 6, 1–29. [Google Scholar]
- Abdolrasol, V.N.M.; Hussain, S.M.S.; Ustun, T.S.; Sarker, M.R.; Hannan, M.A.; Mohamed, R.; Ali, J.A.; Mekhilef, S.; Milad, A. Artificial Neural Networks Based Optimization Techniques: A Review. Electronics 2021, 10, 2689. [Google Scholar] [CrossRef]
- Bejani, M.M.; Ghatee, M. A systematic review on overfitting control in shallow and deep neural networks. Artif. Intell. Rev. 2021, 54, 6391–6438. [Google Scholar] [CrossRef]
- Tien, J.M. Internet of things, real-time decision making, and artificial intelligence. Ann. Data Sci. 2017, 4, 149–178. [Google Scholar] [CrossRef]
- Wen, H.-T.; Lu, J.-H.; Phuc, M.-X. Applying Artificial Intelligence to Predict the Composition of Syngas Using Rice Husks: A Comparison of Artificial Neural Networks and Gradient Boosting Regression. Energies 2021, 14, 2932. [Google Scholar] [CrossRef]
- Soltani, A.; Battikh, T.; Jabri, I.; Lakhoua, N. A new expert system based on fuzzy logic and image processing algorithms for early glaucoma diagnosis. Biomed. Signal Process. Control 2018, 40, 366–377. [Google Scholar] [CrossRef]
- Hawkins, D.M. The problem of overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Baier, L.; Jöhren, F.; Seebacher, S. Challenges in the Deployment and Operation of Machine Learning in Practice. In Proceedings of the ECIS 2019—27th European Conference on Information Systems, Stockholm, Sweden, 8–14 June 2019. [Google Scholar]
- Wu, S. A traffic motion object extraction algorithm. Int. J. Bifurc. Chaos 2015, 25, 1540039. [Google Scholar] [CrossRef]
- Jabbar, H.; Rafiqul, Z.K. Methods to avoid over-fitting and under-fitting in supervised machine learning (comparative study). In Computer Science, Communication and Instrumenta tion Devices; Research Publishing: Singapore, 2015; Volume 70.10.3850, pp. 163–172. [Google Scholar] [CrossRef]
- Ying, X. An overview of overfitting and its solutions. J. Phys. Conf. Ser. 2019, 1168, 022022. [Google Scholar] [CrossRef]
- Bodo, B.; Helberger, N.; Iron, K.; Zuiderveen, B.F.; Moller, J.; Van de Velde, B.; Bol, N.; Van Es, B.; de Vreese, C. Tackling the algorithmic control crisis-the technical, legal, and ethical challenges of research into algorithmic agents. Yale J. Law Technol. 2017, 19, 133–180. [Google Scholar]
- Whittlestone, J.; Nyrup, R.; Alexandrova, A.; Dihal, K.; Cave, S. Ethical and Societal Implications of Algorithms, Data, and Artificial Intelligence: A Roadmap for Research; Report Number: 978-1-9160211-0-5; Nuffield Foundation: London, UK, 2019. [Google Scholar]
- Zhang, J. Computer image processing and neural network technology for thermal energy diagnosis of boiler plants. Therm. Sci. 2020, 24, 3221–3228. [Google Scholar] [CrossRef]
- Chen, J.; Li, Q.; Liu, K.; Li, X.; Lu, B.; Li, G. Correction of moisture interference in laser-induced breakdown spectroscopy detection of coal by combining neural networks and random spectral attenuation. J. Anal. At. Spectrom. 2022, 37, 1658–1664. [Google Scholar] [CrossRef]
- Fernández-Alemán, J.; Lopez-gonzalez, L.; González-Sequeros, O.; López-Jiménez, J.J.; Carrillo de Gea, J.M.; Toval, A. An empirical study of neural network-based audience response technology in a human anatomy course for pharmacy students. J. Med. Syst. 2016, 40, 85. [Google Scholar] [CrossRef]
- Stanujkic, D.; Zavadskas, E.K.; Karabasevic, D.; Smarandache, F.; Turskis, Z. The use of the PIvot Pairwise RElative Criteria Importance Assessment method for determining the weights of criteria. Rom. J. Econ. Forecast. 2016, 20, 116–133. [Google Scholar]
- Saaty, R.W. The analytic hierarchy process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Stanujkic, D.; Karabasevic, D.; Popovic, G.; Sava, C. Simplified Pivot Pairwise Relative Criteria Importance Assessment (Piprecia-S) Method. Rom. J. Econ. Forecast. 2021, 24, 141–154. [Google Scholar]
- de Fine Licht, K.; de Fine Licht, J. Artificial intelligence, transparency, and public decision-making: Why explanations are key when trying to produce perceived legitimacy. AI Soc. 2020, 35, 917–926. [Google Scholar] [CrossRef]
- Halim, A.H.; Ismail, I.; Das, S. Performance assessment of the metaheuristic optimization algorithms: An exhaustive review. Artif. Intell. Rev. 2021, 54, 2323–2409. [Google Scholar] [CrossRef]
- Duan, T.; Wang, W.; Wang, T.; Chen, X.; Li, X. Dynamic tasks scheduling model of UAV cluster based on flexible network architecture. IEEE Access 2020, 8, 115448–115460. [Google Scholar] [CrossRef]
- Naveed, Q.N.; Qureshi, M.R.N.; Tairan, N.; Mohammad, A.; Shaikh, A.; Alsayed, A.O.; Shah, A.; Alotaibi, F.M. Evaluating critical success factors in implementing E-learning system using multi-criteria decision-making. PLoS ONE 2020, 15, e0231465. [Google Scholar] [CrossRef] [PubMed]
- Khaire, U.M.; Dhanalakshmi, R. Stability of feature selection algorithm: A review. J. King Saud Univ. -Comput. Inf. Sci. 2022, 34, 1060–1073. [Google Scholar] [CrossRef]
- Ramezani, S.; Cummins, L.; Killen, B.; Carley, R.; Amirlatifi, A.; Rahimi, S.; Seale, M.; Bian, L. Scalability, explainability and performance of data-driven algorithms in predicting the remaining useful life: A comprehensive review. IEEE Access 2023, 11, 41741–41769. [Google Scholar] [CrossRef]
- Vollmer, S.; Mateen, B.A.; Bohner, G.; Király, F.J.; Ghani, R.; Jonsson, P.; Cumbers, S.; Jonas, A.; McAllister, K.S.L.; Myles, P.; et al. Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. BMJ 2020, 368, l6927. [Google Scholar] [CrossRef]
- Sintaro, S.; Setiawansyah, S. Kombinasi Multi-Objective Optimization on the basis of Ratio Analysis (MOORA) dan PIPRECIA dalam Seleksi Penerimaan Barista. J. Ilm. Inform. Dan Ilmu Komput. (JIMA-ILKOM) 2024, 3, 13–23. [Google Scholar] [CrossRef]
- Setiawansyah, S.; Sintaro, S.; Saputra, V.H.; Aldino, A.A. Combination of Grey Relational Analysis (GRA) and Simplified Pivot Pairwise Relative Criteria Importance Assessment (PIPRECIA-S) in Determining the Best Staff. Bull. Inform. Data Sci. 2024, 2, 57–66. [Google Scholar] [CrossRef]
Description of Criteria | Significance of Criteria | PIPRECIA-S Scale |
---|---|---|
The criterion is much less important than the reference | 1 | 0.60 |
The criterion is somewhat less important than the reference | 2 | 0.80 |
The criterion has the same importance as the reference | 3 | 1.00 |
The criterion is slightly more important than the reference | 4 | 1.20 |
The criterion is much more important than the reference | 5 | 1.40 |
Evaluation Criteria | Values of criteria | Final Weight |
---|---|---|
Efficiency | 5 (1.40) | 0.41 |
Flexibility | 4 (1.20) | 0.28 |
Ease of implementation | 3 (1.00) | 0.18 |
Stability | 2 (0.80) | 0.09 |
Scalability | 1 (0.60) | 0.04 |
Criterion | Linear Regression | KNN | SVM | Neural Networks | Random Forest | XGBoost | CNN | RNN |
---|---|---|---|---|---|---|---|---|
Rating | 3 (1.00) | 4 (1.20) | 5 (1.40) | 5 (1.40) | 4 (1.20) | 5 (1.40) | 5 (1.40) | 4 (1.20) |
Criterion | Linear Regression | KNN | SVM | Neural Networks | Random Forest | XGBoost | CNN | RNN |
---|---|---|---|---|---|---|---|---|
Rating | 5 (1.40) | 3 (1.00) | 3 (1.00) | 2 (0.80) | 4 (1.20) | 4 (1.20) | 2 (0.80) | 2 (0.80) |
Criterion | Linear Regression | KNN | SVM | Neural Networks | Random Forest | XGBoost | CNN | RNN |
---|---|---|---|---|---|---|---|---|
Rating | 5 (1.40) | 4 (1.20) | 4 (1.20) | 2 (1.20) | 4 (1.40) | 3 (1.00) | 2 (0.80) | 3 (1.00) |
Criterion | Linear Regression | KNN | SVM | Neural Networks | Random Forest | XGBoost | CNN | RNN |
---|---|---|---|---|---|---|---|---|
Rating | 3 (1.00) | 3 (1.00) | 4 (1.20) | 5 (1.40) | 4 (1.20) | 5 (1.40) | 5 (1.40) | 5 (1.40) |
Criterion | Linear Regression | KNN | SVM | Neural Networks | Random Forest | XGBoost | CNN | RNN |
---|---|---|---|---|---|---|---|---|
Rating | 5 (1.40) | 4 (1.20) | 3 (1.00) | 2 (0.80) | 4 (1.20) | 3 (1.00) | 2 (0.80) | 2 (0.80) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popović, S.; Viduka, D.; Bašić, A.; Dimić, V.; Djukic, D.; Nikolić, V.; Stokić, A. Optimization of Artificial Intelligence Algorithm Selection: PIPRECIA-S Model and Multi-Criteria Analysis. Electronics 2025, 14, 562. https://doi.org/10.3390/electronics14030562
Popović S, Viduka D, Bašić A, Dimić V, Djukic D, Nikolić V, Stokić A. Optimization of Artificial Intelligence Algorithm Selection: PIPRECIA-S Model and Multi-Criteria Analysis. Electronics. 2025; 14(3):562. https://doi.org/10.3390/electronics14030562
Chicago/Turabian StylePopović, Stefan, Dejan Viduka, Ana Bašić, Violeta Dimić, Dejan Djukic, Vojkan Nikolić, and Aleksandar Stokić. 2025. "Optimization of Artificial Intelligence Algorithm Selection: PIPRECIA-S Model and Multi-Criteria Analysis" Electronics 14, no. 3: 562. https://doi.org/10.3390/electronics14030562
APA StylePopović, S., Viduka, D., Bašić, A., Dimić, V., Djukic, D., Nikolić, V., & Stokić, A. (2025). Optimization of Artificial Intelligence Algorithm Selection: PIPRECIA-S Model and Multi-Criteria Analysis. Electronics, 14(3), 562. https://doi.org/10.3390/electronics14030562