Molecular Layer Doping ZnO Films as a Novel Approach to Resistive Oxygen Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of the Thin Films
2.1.1. Atomic Layer Deposition (ALD)
2.1.2. Physical Vapor Deposition (PVD)
2.2. Film Characterization
2.2.1. Ellipsometry
2.2.2. X-Ray Photoelectron Spectroscopy (XPS)
2.2.3. Optical Properties
2.2.4. Electrical Properties
2.2.5. Kelvin Probe Force Microscopy (KPFM)
2.2.6. Sensing Properties
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johny, V.; Chinmaya, K.V.; Nihal, C.V.M.; Kurian, V.; Rao, G.M.; Ghosh, M.; Ghosh, S. Towards Real-Time Oxygen Sensing: From Nanomaterials to Plasma. Front. Sens. 2022, 2, 21. [Google Scholar] [CrossRef]
- Kashem, M.A.; Suzuki, M.; Kimoto, K.; Iribe, Y. An Optical Biochemical Oxygen Demand Biosensor Chip for Environmental Monitoring. Sens. Actuators B Chem. 2015, 221, 1594–1600. [Google Scholar] [CrossRef]
- Ardi, S.; Abdurrahman, H. Design of Pokayoke Systems to Increase the Efficiency of Function Check Oxygen Sensor Machine Using Programmable Logic Controller in Manufacturing Industry. In Proceedings of the 2017 4th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), Semarang, Indonesia, 18–19 October 2017; pp. 192–196. [Google Scholar]
- Ramamoorthy, R.; Dutta, P.K.; Akbar, S.A. Oxygen Sensors: Materials, Methods, Designs and Applications. J. Mater. Sci. 2003, 38, 4271–4282. [Google Scholar] [CrossRef]
- Tutunea, D.; Dumitru, I.; Stănciuc-Oţăt, O. V Overview of the Use of Oxygen Sensors in Automotive Applications. IOP Conf. Ser. Mater. Sci. Eng. 2024, 1303, 012014. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Zhu, S.; Li, X.; Zhao, H.; Li, X.; Zhang, H.; Jiang, H.; Lu, X.; Kong, W.; et al. Development and Measurement of Airborne Oxygen Sensor for Aircraft Inerting System Based on TDLAS with Pressure Compensation and 2f/1f Normalized Method. Infrared Phys. Technol. 2023, 131, 104689. [Google Scholar] [CrossRef]
- Yuan, M.; Zhang, X.; Wang, J.; Zhao, Y. Recent Progress of Energy-Storage-Device-Integrated Sensing Systems. Nanomaterials 2023, 13, 645. [Google Scholar] [CrossRef]
- Bulowski, W.; Knura, R.; Socha, R.P.; Basiura, M.; Skibińska, K.; Wojnicki, M. Thin Film Semiconductor Metal Oxide Oxygen Sensors: Limitations, Challenges, and Future Progress. Electronics 2024, 13, 3409. [Google Scholar] [CrossRef]
- Jasek, K.; Pasternak, M.; Grabka, M. Paramagnetic Sensors for the Determination of Oxygen Concentration in Gas Mixtures. ACS Sens. 2022, 7, 3228–3242. [Google Scholar] [CrossRef]
- Orlov, S.N.; Bogachev, N.A.; Mereshchenko, A.S.; Zmitrodan, A.A.; Skripkin, M.Y. Electrochemical Sensors for Controlling Oxygen Content and Corrosion Processes in Lead-Bismuth Eutectic Coolant—State of the Art. Sensors 2023, 23, 812. [Google Scholar] [CrossRef]
- Nashimoto, Y.; Mukomoto, R.; Imaizumi, T.; Terai, T.; Shishido, S.; Ino, K.; Yokokawa, R.; Miura, T.; Onuma, K.; Inoue, M.; et al. Electrochemical Sensing of Oxygen Metabolism for a Three-Dimensional Cultured Model with Biomimetic Vascular Flow. Biosens. Bioelectron. 2023, 219, 114808. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, L.; Cheng, T.; Zhang, X.; Li, Y.; Zhang, X.; Zheng, W.; Wang, Y.; Zhang, J. Lead-Free Double Perovskite Halide Fluorescent Oxygen Sensor with High Stability. Ceram. Int. 2023, 49, 30266–30272. [Google Scholar] [CrossRef]
- Ge, X.; Kostov, Y.; Rao, G. High-Stability Non-Invasive Autoclavable Naked Optical CO2 Sensor. Biosens. Bioelectron. 2003, 18, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Nisti, A.; Dini, F.; Catini, A.; Capuano, R.; Martinelli, E.; Paolesse, R.; Di Natale, C.; D’Amico, A. An Optical Sensor for Measuring Oxygen Concentration. In Sensors; Springer: New York, NY, USA, 2014; pp. 459–463. [Google Scholar]
- Moos, R.; Izu, N.; Rettig, F.; Reiß, S.; Shin, W.; Matinfara, I. Resistive Oxygen Gas Sensors for Harsh Environments. Sensors 2011, 11, 3439–3465. [Google Scholar] [CrossRef] [PubMed]
- Franco, M.A.; Conti, P.P.; Andre, R.S.; Correa, D.S. A Review on Chemiresistive ZnO Gas Sensors. Sens. Actuators Rep. 2022, 4, 100100. [Google Scholar] [CrossRef]
- Kang, X.; Deng, N.; Yan, Z.; Pan, Y.; Sun, W.; Zhang, Y. Resistive-Type VOCs and Pollution Gases Sensor Based on SnO2: A Review. Mater. Sci. Semicond. Process 2022, 138, 106246. [Google Scholar] [CrossRef]
- Li, Z.; Yao, Z.; Haidry, A.A.; Plecenik, T.; Xie, L.; Sun, L.; Fatima, Q. Resistive-Type Hydrogen Gas Sensor Based on TiO2: A Review. Int. J. Hydrog. Energy 2018, 43, 21114–21132. [Google Scholar] [CrossRef]
- Shu, L.; Wang, X.; Yan, D.; Fan, L.; Wu, W. The Investigation of High-Temperature SAW Oxygen Sensor Based on ZnO Films. Materials 2019, 12, 1235. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Tan, O.K.; Pan, J.S.; Huang, H.; Cao, W. The Effects of Annealing Temperature on the Sensing Properties of Low Temperature Nano-Sized SrTiO3 Oxygen Gas Sensor. Sens. Actuators B Chem. 2005, 108, 244–249. [Google Scholar] [CrossRef]
- Duan, C.; Zhang, L.; Wu, Z.; Wang, X.; Meng, M.; Zhang, M. Study on the Deterioration Mechanism of Pb on TiO2 Oxygen Sensor. Micromachines 2023, 14, 156. [Google Scholar] [CrossRef] [PubMed]
- Wawrzyniak, J. Advancements in Improving Selectivity of Metal Oxide Semiconductor Gas Sensors Opening New Perspectives for Their Application in Food Industry. Sensors 2023, 23, 9548. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, H.; Wang, Y.; Zhou, Y. Approaches for Selectivity Improvement of Conductometric Gas Sensors: An Overview. Sens. Diagn. 2024, 3, 336–353. [Google Scholar] [CrossRef]
- Barhoum, A.; Hamimed, S.; Slimi, H.; Othmani, A.; Abdel-Haleem, F.M.; Bechelany, M. Modern Designs of Electrochemical Sensor Platforms for Environmental Analyses: Principles, Nanofabrication Opportunities, and Challenges. Trends Environ. Anal. Chem. 2023, 38, e00199. [Google Scholar] [CrossRef]
- Hakeem Anwer, A.; Saadaoui, M.; Mohamed, A.T.; Ahmad, N.; Benamor, A. State-of-the-Art Advances and Challenges in Wearable Gas Sensors for Emerging Applications: Innovations and Future Prospects. Chem. Eng. J. 2024, 502, 157899. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Yen, T.-Y.; Shi, M.-T.; Hung, Y.-H.; Chen, W.-T.; Wu, C.-H.; Hung, K.-M.; Lo, K.-Y. Competition between Oxygen and Water Molecules on SiO2/P-Doped Si Surface: The Electrical Dipole Evolution on Water/Oxygen-Adsorbed Oxide Surface. Sens. Actuators B Chem. 2023, 376, 133011. [Google Scholar] [CrossRef]
- Yang, L.-Y.; Ke, T.-S.; Yan, Z.-J.; Yeh, C.-H.; Tseng, W.J. Effect of Humidity Interference on NO2 Gas Sensing of In2O3 Nanoneedles at Moderate Operating Temperature. Ceram. Int. 2024, 50, 38415–38423. [Google Scholar] [CrossRef]
- Tereshkov, M.; Dontsova, T.; Saruhan, B.; Krüger, S. Metal Oxide-Based Sensors for Ecological Monitoring: Progress and Perspectives. Chemosensors 2024, 12, 42. [Google Scholar] [CrossRef]
- Fuśnik, Ł.; Szafraniak, B.; Paleczek, A.; Grochala, D.; Rydosz, A. A Review of Gas Measurement Set-Ups. Sensors 2022, 22, 2557. [Google Scholar] [CrossRef] [PubMed]
- Robbiani, S.; Lotesoriere, B.J.; Dellacà, R.L.; Capelli, L. Physical Confounding Factors Affecting Gas Sensors Response: A Review on Effects and Compensation Strategies for Electronic Nose Applications. Chemosensors 2023, 11, 514. [Google Scholar] [CrossRef]
- Recent, Y.; Kulinich, S.; Wang, Y.; Zhou, Y. Recent Progress on Anti-Humidity Strategies of Chemiresistive Gas Sensors. Materials 2022, 15, 8728. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Boris, I.; Brinzari, V.; Han, S.H.; Cho, B.K. The Role of Doping Effect on the Response of SnO2-Based Thin Film Gas Sensors: Analysis Based on the Results Obtained for Co-Doped SnO2 Films Deposited by Spray Pyrolysis. Sens. Actuators B Chem. 2013, 182, 112–124. [Google Scholar] [CrossRef]
- Jeong, S.; Moon, Y.K.; Kim, J.K.; Park, S.; Jo, Y.K.; Kang, Y.C.; Lee, J. A General Solution to Mitigate Water Poisoning of Oxide Chemiresistors: Bilayer Sensors with Tb 4 O 7 Overlayer. Adv. Funct. Mater. 2021, 31, 2007895. [Google Scholar] [CrossRef]
- Bernasconi, S.; Angelucci, A.; De Cesari, A.; Masotti, A.; Pandocchi, M.; Vacca, F.; Zhao, X.; Paganelli, C.; Aliverti, A. Recent Technologies for Transcutaneous Oxygen and Carbon Dioxide Monitoring. Diagnostics 2024, 14, 785. [Google Scholar] [CrossRef]
- Yu, J.; Wang, D.; Tipparaju, V.V.; Tsow, F.; Xian, X. Mitigation of Humidity Interference in Colorimetric Sensing of Gases. ACS Sens. 2021, 6, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Wang, S.; Fu, H.; Shao, H.; Wang, Y.; Yu, K.; Huang, Y.; Jv, Z.; Wang, L. An Efficient Vapor-Phase Processing Method Derived Mesoporous N-C@SnO2-Co3O4 Hollow Nanoboxes with Abundant Surface Oxygen Vacancy for Highly Improved Gas Sensing Application. J. Alloys Compd. 2021, 863, 158341. [Google Scholar] [CrossRef]
- Shooshtari, M.; Pahlavan, S.; Rahbarpour, S.; Ghafoorifard, H. Investigating Organic Vapor Sensing Properties of Composite Carbon Nanotube-Zinc Oxide Nanowire. Chemosensors 2022, 10, 205. [Google Scholar] [CrossRef]
- Godse, P.R.; Kadam, S.A.; Nimbalkar, T.M.; Jadhav, Y.M.; Jadhao, Y.B.; Ma, Y.R.; Patil, V.B. Ultra-Responsive and Highly Sensitive 1D ZnO Nanotubes for Detecting Perilous Low Levels of NO2 Gas. Mater. Adv. 2024, 5, 2826–2840. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Li, G.; Liu, J.; Liang, Q.; Wang, H.; Zhu, Y.; Gao, J.; Lu, H. In2O3–ZnO Nanotubes for the Sensitive and Selective Detection of Ppb-Level NO2 under UV Irradiation at Room Temperature. Sens. Actuators B Chem. 2022, 355, 131322. [Google Scholar] [CrossRef]
- Al-Salman, H.S.; Abdullah, M.J.; Al-Hardan, N. ZnO Thin Film Nanostructures for Hydrogen Gas Sensing Applications. Ceram. Int. 2013, 39, S447–S450. [Google Scholar] [CrossRef]
- Aleksanyan, M.; Sayunts, A.; Aroutiounian, V.; Shahkhatuni, G.; Simonyan, Z.; Shahnazaryan, G. Gas Sensor Based on ZnO Nanostructured Film for the Detection of Ethanol Vapor. Chemosensors 2022, 10, 245. [Google Scholar] [CrossRef]
- Khosravi, Y.; Sasar, M.; Abdi, Y. Light-Induced Oxygen Sensing Using ZnO/GO Based Gas Sensor. Mater. Sci. Semicond. Process 2018, 85, 9–14. [Google Scholar] [CrossRef]
- Li, S.; Yu, L.; Cao, L.; Zhang, C.; Du, H.; Wang, H.; Fan, X.; Gu, F. Engineering of Thickness Tunable 2D Graphdiyne Film to ZnO Nanowalls via Nanospace-Confined Synthesis Promotes NO2 Gas Sensing Performance. Sens. Actuators B Chem. 2024, 410, 135729. [Google Scholar] [CrossRef]
- Oviroh, P.O.; Akbarzadeh, R.; Pan, D.; Coetzee, R.A.M.; Jen, T.-C. New Development of Atomic Layer Deposition: Processes, Methods and Applications. Sci. Technol. Adv. Mater. 2019, 20, 465–496. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Julbe, A.; Kim, S.S.; Bechelany, M. Atomic Layer Deposition (ALD) on Inorganic or Polymeric Membranes. J. Appl. Phys. 2019, 126, 041101. [Google Scholar] [CrossRef]
- George, S.M. Atomic Layer Deposition: An Overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.W.; Hultqvist, A.; Bent, S.F. A Brief Review of Atomic Layer Deposition: From Fundamentals to Applications. Mater. Today 2014, 17, 236–246. [Google Scholar] [CrossRef]
- Yin, Y. Advances and Perspectives of Spin Coating Techniques. Appl. Comput. Eng. 2023, 7, 291–301. [Google Scholar] [CrossRef]
- Moreira, J.; Vale, A.C.; Alves, N.M. Spin-Coated Freestanding Films for Biomedical Applications. J. Mater. Chem. B 2021, 9, 3778–3799. [Google Scholar] [CrossRef] [PubMed]
- Nisticò, R.; Scalarone, D.; Magnacca, G. Sol-Gel Chemistry, Templating and Spin-Coating Deposition: A Combined Approach to Control in a Simple Way the Porosity of Inorganic Thin Films/Coatings. Microporous Mesoporous Mater. 2017, 248, 18–29. [Google Scholar] [CrossRef]
- Xavier, R.; Sivaperuman, K. Review on the of Physical Vapor Deposition on Imminent Chemiresistive Metal Oxide Gas Sensors and Their Future Scope. Mater. Today Commun. 2024, 38, 107831. [Google Scholar] [CrossRef]
- Liang, F.; Yang, J.; Zhao, Y.; Zhou, Y.; Yan, Z.; He, J.; Yuan, Q.; Wu, J.; Liu, P.; Zhong, Z.; et al. A Review of Thin Film Electrolytes Fabricated by Physical Vapor Deposition for Solid Oxide Fuel Cells. Int. J. Hydrog. Energy 2022, 47, 36926–36952. [Google Scholar] [CrossRef]
- Schalk, N.; Tkadletz, M.; Mitterer, C. Hard Coatings for Cutting Applications: Physical vs. Chemical Vapor Deposition and Future Challenges for the Coatings Community. Surf. Coat. Technol. 2022, 429, 127949. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Fu, Y.; Chen, R.; Li, T.; Hou, X.; Li, H. Research Progress in Chemical Vapor Deposition for High-Temperature Anti-Oxidation/Ablation Coatings on Thermal Structural Composites. Compos. B Eng. 2025, 291, 112015. [Google Scholar] [CrossRef]
- Vallejos, S.; Di Maggio, F.; Shujah, T.; Blackman, C. Chemical Vapour Deposition of Gas Sensitive Metal Oxides. Chemosensors 2016, 4, 4. [Google Scholar] [CrossRef]
- Nur-E-Alam, M.; Maurya, D.K.; Yap, B.K.; Rajabi, A.; Doroody, C.; Bin Mohamed, H.; Khandaker, M.U.; Islam, M.A.; Kiong Tiong, S. Physical-Vapor-Deposited Metal Oxide Thin Films for PH Sensing Applications: Last Decade of Research Progress. Sensors 2023, 23, 8194. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar; Shivaraj, B.W.; Manjunatha, C.; Abhishek, B.; Nagaraju, G.; Panda, P.K. Hydrothermal Synthesis of ZnO Nanotubes for CO Gas Sensing. Sens. Int. 2020, 1, 100018. [Google Scholar] [CrossRef]
- Bhattarai, R.; Ghimire, R.R.; Mulmi, D.D.; Thapa, R.B. Modeling of Gas Sensor Based on Zinc Oxide Thin Films by Feedback Loop Using Operational Amplifier. Heliyon 2024, 10, e29222. [Google Scholar] [CrossRef] [PubMed]
- S., K.G.; Kaur, M.; M., S.; Pathak, A.; Gadkari, S.C.; Debnath, A.K. Highly Sensitive NO2 Sensor Based on ZnO Nanostructured Thin Film Prepared by SILAR Technique. Sens. Actuators B Chem. 2021, 335, 129678. [Google Scholar] [CrossRef]
- Soltabayev, B.; Ajjaq, A.; Yergaliuly, G.; Kadyrov, Y.; Turlybekuly, A.; Acar, S.; Mentbayeva, A. Ultrasensitive Nitric Oxide Gas Sensors Based on Ti-Doped ZnO Nanofilms Prepared by RF Magnetron Sputtering System. J. Alloys Compd. 2023, 953, 170125. [Google Scholar] [CrossRef]
- Kim, H.; Hung, N.L.; Ahn, E.; Jung, H.; Kim, D. Synthesis and Gas Sensing Properties of ZnO Nanostructures. J. Korean Phys. Soc. 2010, 57, 1784–1788. [Google Scholar] [CrossRef]
- Nguyen, T.; Adjeroud, N.; Guennou, M.; Guillot, J.; Fleming, Y.; Papon, A.-M.; Arl, D.; Menguelti, K.; Joly, R.; Gambacorti, N.; et al. Controlling Electrical and Optical Properties of Zinc Oxide Thin Films Grown by Thermal Atomic Layer Deposition with Oxygen Gas. Results Mater. 2020, 6, 100088. [Google Scholar] [CrossRef]
- Papadimitriou, D.N. Engineering of Optical and Electrical Properties of Electrodeposited Highly Doped Al:ZnO and In:ZnO for Cost-Effective Photovoltaic Device Technology. Micromachines 2022, 13, 1966. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Bang, S.; Lee, S.; Kwon, S.; Jeong, W.; Jeon, H.; Chang, H.J.; Park, H.-H. Structural and Electrical Properties of ZnO Thin Films Deposited by Atomic Layer Deposition at Low Temperatures. J. Electrochem. Soc. 2008, 155, H738. [Google Scholar] [CrossRef]
- Meng, X.; Wang, X.; Geng, D.; Ozgit-Akgun, C.; Schneider, N.; Elam, J.W. Atomic Layer Deposition for Nanomaterial Synthesis and Functionalization in Energy Technology. Mater. Horiz. 2017, 4, 133–154. [Google Scholar] [CrossRef]
- Cao, V.A.; Kim, M.; Hu, W.; Lee, S.; Youn, S.; Chang, J.; Chang, H.S.; Nah, J. Enhanced Piezoelectric Output Performance of the SnS 2/SnS Heterostructure Thin-Film Piezoelectric Nanogenerator Realized by Atomic Layer Deposition. ACS Nano 2021, 15, 10428–10436. [Google Scholar] [CrossRef] [PubMed]
- Sharme, R.K.; Quijada, M.; Terrones, M.; Rana, M.M. Thin Conducting Films: Preparation Methods, Optical and Electrical Properties, and Emerging Trends, Challenges, and Opportunities. Materials 2024, 17, 4559. [Google Scholar] [CrossRef]
- Sharma, A.; Abdur, R.; Kim, D.; Tripathi, A.K.; Singh, S.; Lee, J.; Yoo, S.-I. Effect of Ge Doping on the Electrical Properties of Amorphous Zn–Sn–O Thin Films. Curr. Appl. Phys. 2020, 20, 1041–1048. [Google Scholar] [CrossRef]
- Badadhe, S.S.; Mulla, I.S. Effect of Aluminium Doping on Structural and Gas Sensing Properties of Zinc Oxide Thin Films Deposited by Spray Pyrolysis. Sens. Actuators B Chem. 2011, 156, 943–948. [Google Scholar] [CrossRef]
- Sahayaraj, S.; Knura, R.; Skibińska, K.; Starowicz, Z.; Bulowski, W.; Gawlińska-Nęcek, K.; Panek, P.; Wojnicki, M.; Iwanek, S.; Majchrowicz, Ł.; et al. Tuning the Optical and Electrical Properties of ALD-Grown ZnO Films by Germanium Doping. Materials 2024, 17, 2906. [Google Scholar] [CrossRef]
- ISO 15472:2010; Surface Chemical Analysis—X-ray Photoelectron Spectrometers—Calibration of Energy Scales. International Organization for Standardization: Geneva, Switzerland, 2010.
- Altowyan, A.S.; Coban, M.B.; Kaynar, U.H.; Hakami, J.; Çin, E.A.; Kaynar, S.C.; Ayvacikli, M.; Can, N. Lattice Distortion Effects Induced by Li+ Co-Doping on ZnO:Tb3+ Phosphors: Photoluminescence and Unusual Hypersensitive 5D4 → 7F0 Transition. Ceram. Int. 2024, 50, 24036–24044. [Google Scholar] [CrossRef]
- Safeen, K.; Safeen, A.; Arif, D.; Shah, W.H.; Ali, A.; Ali, G.; Hussain, F.; Imran, N.; Ullah Shah, A.; Alataway, A.; et al. Tuning the Optical Properties of ZnO by Co and Gd Doping for Water Pollutant Elimination. Water (Basel) 2023, 15, 1470. [Google Scholar] [CrossRef]
- Marinho, J.Z.; de Paula, L.F.; Longo, E.; Patrocinio, A.O.T.; Lima, R.C. Effect of Gd3+ Doping on Structural and Photocatalytic Properties of ZnO Obtained by Facile Microwave-Hydrothermal Method. SN Appl. Sci. 2019, 1, 359. [Google Scholar] [CrossRef]
- Habte, A.G.; Hone, F.G.; Dejene, F.B. Influence of Cu-Doping Concentration on the Structural and Optical Properties of SnO 2 Nanoparticles by Coprecipitation Route. J. Nanomater. 2022, 2022. [Google Scholar] [CrossRef]
- Dey, B.; Narzary, R.; Chouhan, L.; Bhattacharjee, S.; Parida, B.N.; Mondal, A.; Ravi, S.; Srivastava, S.K. Crystal Structure, Optical and Dielectric Properties of Ag:ZnO Composite-like Compounds. J. Mater. Sci. Mater. Electron. 2022, 33, 2855–2868. [Google Scholar] [CrossRef]
- Mohamed Saadon, N.A.F.; Taib, N.I.; Loy, C.W.; Mohamed, Z. Role of Ca2+ Doping on the Enhancement of Dielectric Properties of Sr2–XCaxNiWO6 for Energy Storage Device Application. Sci. Rep. 2023, 13, 1246. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C. Study of the Electronic Structure and Optical Properties of Rare Earth Luminescent Materials. J. Mater. Sci. Chem. Eng. 2023, 11, 8–18. [Google Scholar] [CrossRef]
- Tan, P.; Huang, X.; Wang, Y.; Xing, B.; Zhang, J.; Hu, C.; Meng, X.; Xu, X.; Li, D.; Wang, X.; et al. Deciphering the Atomistic Mechanism Underlying Highly Tunable Piezoelectric Properties in Perovskite Ferroelectrics via Transition Metal Doping. Nat. Commun. 2024, 15, 10619. [Google Scholar] [CrossRef]
- Jia, J.; Takasaki, A.; Oka, N.; Shigesato, Y. Experimental Observation on the Fermi Level Shift in Polycrystalline Al-Doped ZnO Films. J. Appl. Phys. 2012, 112, 013718. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; He, J.; Bai, Z.; Li, G.; Zhang, X.; He, D.; Zhao, H. Effect of Niobium Doping on Excitonic Dynamics in MoSe2. 2d Mater. 2024, 11, 035003. [Google Scholar] [CrossRef]
- Starowicz, Z.; Zięba, A.; Ostapko, J.; Wlazło, M.; Kołodziej, G.; Jakub Szczerba, M.; Putynkowski, G.; Piotr Socha, R. Synthesis and Characterization of Al-Doped ZnO and Al/F Co-Doped ZnO Thin Films Prepared by Atomic Layer Deposition. Mater. Sci. Eng. B 2023, 292, 116405. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K. Handbook of X-Ray Photoelectron Spectroscopy 2nd Ed. Perkin-Elmer Corporation (Physi-Cal Electronics), 2nd ed.; Chastain, J., Ed.; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1992. [Google Scholar]
- National Institute of Standards and Technology. NIST X-Ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Kittel, C. Introduction to Solid State Physics, 8th ed.; Johnson, S., McFadden, P., Batey, M., Eds.; John Wiley & Sons Inc: Hoboken, NJ, USA, 2005; Volume 1. [Google Scholar]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Burstein, E. Anomalous Optical Absorption Limit in InSb. Phys. Rev. 1954, 93, 632–633. [Google Scholar] [CrossRef]
- Moss, T.S. The Interpretation of the Properties of Indium Antimonide. Proc. Phys. Society. Sect. B 1954, 67, 775–782. [Google Scholar] [CrossRef]
- Kiruthiga, G.; Rajni, K.S.; Geethanjali, N.; Raguram, T.; Nandhakumar, E.; Senthilkumar, N. SnO2: Investigation of Optical, Structural, and Electrical Properties of Transparent Conductive Oxide Thin Films Prepared by Nebulized Spray Pyrolysis for Photovoltaic Applications. Inorg. Chem. Commun. 2022, 145, 109968. [Google Scholar] [CrossRef]
- Ciftyurek, E.; Li, Z.; Schierbaum, K. Adsorbed Oxygen Ions and Oxygen Vacancies: Their Concentration and Distribution in Metal Oxide Chemical Sensors and Influencing Role in Sensitivity and Sensing Mechanisms. Sensors 2022, 23, 29. [Google Scholar] [CrossRef] [PubMed]
- Barin, I. Thermochemical Data of Pure Substances; Wiley: Hoboken, NJ, USA, 1995. [Google Scholar] [CrossRef]
- Rajput, J.K.; Pathak, T.K.; Kumar, V.; Swart, H.C.; Purohit, L.P. CdO:ZnO Nanocomposite Thin Films for Oxygen Gas Sensing at Low Temperature. Mater. Sci. Eng. B 2018, 228, 241–248. [Google Scholar] [CrossRef]
- Miller, J.B.; Ashok, T.; Lee, S.; Broitman, E. Zinc Oxide-Based Thin Film Functional Layers for Chemiresistive Sensors. Thin Solid Film. 2012, 520, 6669–6676. [Google Scholar] [CrossRef]
- Ali, D.; Muneer, I.; Butt, M.Z. Influence of Aluminum Precursor Nature on the Properties of AZO Thin Films and Its Potential Application as Oxygen Sensor. Opt. Mater. 2021, 120, 111406. [Google Scholar] [CrossRef]
- Mokrushin, A.S.; Simonenko, E.P.; Simonenko, N.P.; Bukunov, K.A.; Sevastyanov, V.G.; Kuznetsov, N.T. Gas-Sensing Properties of Nanostructured CeO2-XZrO2 Thin Films Obtained by the Sol-Gel Method. J. Alloys Compd. 2019, 773, 1023–1032. [Google Scholar] [CrossRef]
- Mun, T.; Koo, J.Y.; Lee, J.; Kim, S.J.; Umarji, G.; Amalnerkar, D.; Lee, W. Resistive-Type Lanthanum Ferrite Oxygen Sensor Based on Nanoparticle-Assimilated Nanofiber Architecture. Sens. Actuators B Chem. 2020, 324, 128712. [Google Scholar] [CrossRef]
- Stratulat, A.; Serban, B.-C.; de Luca, A.; Avramescu, V.; Cobianu, C.; Brezeanu, M.; Buiu, O.; Diamandescu, L.; Feder, M.; Ali, S.; et al. Low Power Resistive Oxygen Sensor Based on Sonochemical SrTi0.6Fe0.4O2.8 (STFO40). Sensors 2015, 15, 17495–17506. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Chang, K.-H. Temperature Independent Resistive Oxygen Sensor Prepared Using Zirconia-Doped Ceria Powders. Sens. Actuators B Chem. 2012, 162, 68–75. [Google Scholar] [CrossRef]
- Bektas, M.; Schönauer-Kamin, D.; Hagen, G.; Mergner, A.; Bojer, C.; Lippert, S.; Milius, W.; Breu, J.; Moos, R. BaFe1-XTaxO3-δ—A Material for Temperature Independent Resistive Oxygen Sensors. Sens. Actuators B Chem. 2014, 190, 208–213. [Google Scholar] [CrossRef]
- Izu, N.; Itoh, T.; Shin, W.; Matsubara, I.; Murayama, N. The Effect of Hafnia Doping on the Resistance of Ceria for Use in Resistive Oxygen Sensors. Sens. Actuators B Chem. 2007, 123, 407–412. [Google Scholar] [CrossRef]
- Murayama, N.; Izu, N.; Shin, W.; Matsubara, I. Resistive Oxygen Gas Sensors Using Cerium Oxide Nanosized Powder. MRS Proc. 2004, 828, A3.2/K4.2. [Google Scholar] [CrossRef]
Sample Name | Doping * | Thickness | Refractive index ** |
---|---|---|---|
ZnO | - | 104.6 nm | 1.9888 |
GZO | 5% Ge | 106.4 nm | 1.9886 |
SZO | 5% Sn | 90.6 nm | 2.2140 |
ZZO | 5% Zr | 101.8 nm | 1.9476 |
NZO | 5% Nb | 96.4 nm | 1.9874 |
Spectrum Component | ZnO | GZO | SZO | ZZO | NZO |
---|---|---|---|---|---|
C 1s | 24.2 At% | 24.4 At% | 11.8 At% | 9.3 At% | 17.6 At% |
O 1s | 41.9 At% | 41.3 At% | 43.1 At% | 44.7 At% | 44.9 At% |
Zn 2p | 33.9 At% | 33.4 At% | 38.3 At% | 46.0 At% | 37.3 At% |
Ge 3d | - | 0.9 At% | - | - | - |
Sn 3p | - | - | 6.7 At% | - | - |
Zr 3d | - | - | - | 0.1 At% | - |
Nb 3d | - | - | - | - | 0.2 At% |
Sample Name | Sheet Carrier Concentration [cm−2] | Sheet Resistance [Ω/□] | Resistivity [Ωcm] | Conductivity [1/Ωcm] | Mobility [cm2/Vs] |
---|---|---|---|---|---|
ZnO | 6.3 × 1013 (n) | 2.0 × 104 | 2.0 × 10−1 | 5.0 × 100 | 4.922 |
GZO | 2.8 × 1015 (n) | 2.4 × 102 | 2.4 × 10−3 | 4.2 × 102 | 9.559 |
SZO | 1.8 × 1014 (n) | 3.1 × 105 | 3.1 × 100 | 3.3 × 10−1 | 0.122 |
ZZO | 1.8 × 1015 (n) | 2.6 × 102 | 2.6 × 10−3 | 3.8 × 102 | 12.962 |
NZO | 4.7 × 1014 (n) | 5.1 × 102 | 5.1 × 10−3 | 2.0 × 102 | 26.156 |
Sample Name | ZnO | SZO | NZO | ZZO | GZO |
---|---|---|---|---|---|
Band gap energy [eV] | 3.23 | 3.25 | 3.26 | 3.45 | 3.50 |
Work function [eV] | 4.37 | 4.50 | 4.51 | 4.61 | 4.65 |
250 °C | 300 °C | 350 °C | 400 °C | 450 °C | |
---|---|---|---|---|---|
GZO | 1.00 | 1.10 | 1.75 | 12.32 | 88.21 |
SZO | 1.19 | 1.65 | 2.03 | 2.98 | 3.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulowski, W.; Socha, R.P.; Drabczyk, A.; Kasza, P.; Panek, P.; Wojnicki, M. Molecular Layer Doping ZnO Films as a Novel Approach to Resistive Oxygen Sensors. Electronics 2025, 14, 595. https://doi.org/10.3390/electronics14030595
Bulowski W, Socha RP, Drabczyk A, Kasza P, Panek P, Wojnicki M. Molecular Layer Doping ZnO Films as a Novel Approach to Resistive Oxygen Sensors. Electronics. 2025; 14(3):595. https://doi.org/10.3390/electronics14030595
Chicago/Turabian StyleBulowski, Wojciech, Robert P. Socha, Anna Drabczyk, Patryk Kasza, Piotr Panek, and Marek Wojnicki. 2025. "Molecular Layer Doping ZnO Films as a Novel Approach to Resistive Oxygen Sensors" Electronics 14, no. 3: 595. https://doi.org/10.3390/electronics14030595
APA StyleBulowski, W., Socha, R. P., Drabczyk, A., Kasza, P., Panek, P., & Wojnicki, M. (2025). Molecular Layer Doping ZnO Films as a Novel Approach to Resistive Oxygen Sensors. Electronics, 14(3), 595. https://doi.org/10.3390/electronics14030595