Solid State Transformers Topologies, Controllers, and Applications: State-of-the-Art Literature Review
Abstract
:1. Introduction
2. Solid State Transformer Topologies
3. High Voltage Solid State Transformers
4. Efficiency of Solid State Transformers
5. Solid State Transformers and Renewables
Fault Ride-Through (FRT) of Wind Turbines
6. Future of Solid State Transformers
7. Conclusions
Funding
Conflicts of Interest
References
- Wrede, H.; Staudt, V.; Steimel, A. Design of an electronic power transformer. In Proceedings of the IEEE 2002 28th Annual Conference of the Industrial Electronics Society, IECON 02, Seville, Spain, 5–8 November 2002; Volume 1382, pp. 1380–1385. [Google Scholar]
- Al-Hafri, A.; Ali, H.; Ghias, A.; Nasir, Q. Transformer-less based solid state transformer for intelligent power management. In Proceedings of the 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA), Ras Al Khaimah, United Arab Emirates, 6–8 December 2016; pp. 1–4. [Google Scholar]
- She, X.; Huang, A.Q.; Burgos, R. Review of Solid-State Transformer Technologies and Their Application in Power Distribution Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 186–198. [Google Scholar] [CrossRef]
- Krishnamoorthy, H.S.; Enjeti, P.N.; Sandoval, J.J. Solid-State Transformer for Grid Interface of High-Power Multipulse Rectifiers. IEEE Trans. Ind. Appl. 2018, 54, 5504–5511. [Google Scholar] [CrossRef]
- Sabahi, M.; Goharrizi, A.Y.; Hosseini, S.H.; Sharifian, M.B.B.; Gharehpetian, G.B. Flexible Power Electronic Transformer. IEEE Trans. Power Electron. 2010, 25, 2159–2169. [Google Scholar] [CrossRef]
- Bala, S.; Das, D.; Aeloiza, E.; Maitra, A.; Rajagopalan, S. Hybrid distribution transformer: Concept development and field demonstration. In Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012; pp. 4061–4068. [Google Scholar]
- Sepahvand, H.; Madhusoodhanan, S.; Corzine, K.; Bhattacharya, S.; Ferdowsi, M. Topology selection for medium-voltage three-phase SiC solid-state transformer. In Proceedings of the 2014 International Conference on Renewable Energy Research and Application (ICRERA), Milwaukee, WI, USA, 19–22 October 2014; pp. 485–489. [Google Scholar]
- Huber, J.E.; Kolar, J.W. Solid-State Transformers: On the Origins and Evolution of Key Concepts. IEEE Ind. Electron. Mag. 2016, 10, 19–28. [Google Scholar] [CrossRef]
- Ronan, E.R.; Sudhoff, S.D.; Glover, S.F.; Galloway, D.L. A power electronic-based distribution transformer. IEEE Trans. Power Deliv. 2002, 17, 537–543. [Google Scholar] [CrossRef]
- Brooks, J.L. Solid state transformer concept development. In Naval Material Command; Civil Eng. Lab., Naval Construction Battalion Center: Port Hueneme, CA, USA, 1980. [Google Scholar]
- Freedman, D.H. Ten Breakthrough Technologies Set to Transform our World. Technol. Rev. 2011. Available online: http://www2.technologyreview.com/news/423686/smart-transformers/ (accessed on 15 October 2018).
- Ortiz, G.; Leibl, M.; Huber, J.; Kolar, J.W. Design and Experimental Testing of a Resonant DC-DC Converter for Solid-State Transformers. IEEE Trans. Power Electron. 2016. [Google Scholar] [CrossRef]
- Ushkewar, S.; Dake, V.; Shinde, V. Designing of solid state pulse power modulator by fabrication of pulse transformer. In Proceedings of the 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 21–22 April 2017; pp. 1–5. [Google Scholar]
- Carpita, M.; Marchesoni, M.; Pellerin, M.; Moser, D. Multilevel Converter for Traction Applications: Small-Scale Prototype Tests Results. IEEE Trans. Ind. Electron. 2008, 55, 2203–2212. [Google Scholar] [CrossRef]
- Ronanki, D.; Williamson, S.S. Topological Overview on Solid-state Transformer Traction Technology in High-speed Trains. In Proceedings of the 2018 IEEE Transportation Electrification Conference and Expo (ITEC), Long Beach, CA, USA, 13–15 June 2018; pp. 32–37. [Google Scholar]
- Bahmani, M.A.; Thiringer, T.; Rabiei, A.; Abdulahovic, T. Comparative Study of a Multi-MW High-Power Density DC Transformer with an Optimized High-Frequency Magnetics in All-DC Offshore Wind Farm. IEEE Trans. Power Deliv. 2016, 31, 857–866. [Google Scholar] [CrossRef]
- Hengsi, Q.; Kimball, J.W. AC-AC dual active bridge converter for solid state transformer. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2009; pp. 3039–3044. [Google Scholar]
- Qin, H.; Kimball, J.W. Solid-State Transformer Architecture Using AC–AC Dual-Active-Bridge Converter. IEEE Trans. Ind. Electron. 2013, 60, 3720–3730. [Google Scholar] [CrossRef]
- Chen, H.; Prasai, A.; Divan, D. Dyna-C: A Minimal Topology for Bidirectional Solid-State Transformers. IEEE Trans. Power Electron. 2017, 32, 995–1005. [Google Scholar] [CrossRef]
- Masoum, A.S.; Hashemnia, N.; Abu-Siada, A.; Masoum, M.A.S.; Islam, S.M. Online Transformer Internal Fault Detection Based on Instantaneous Voltage and Current Measurements Considering Impact of Harmonics. IEEE Trans. Power Deliv. 2017, 32, 587–598. [Google Scholar] [CrossRef]
- Cha, H.J.; Enjeti, P.N. A three-phase AC/AC high-frequency link matrix converter for VSCF applications. In Proceedings of the 2003 IEEE 34th Annual Power Electronics Specialist Conference, Acapulco, Mexico, 15–19 June 2003; Volume 1974, pp. 1971–1976. [Google Scholar]
- Jin, A.; Li, H.; Li, S. A New Matrix Type Three-Phase Four-Wire Power Electronic Transformer. In Proceedings of the 2006 37th IEEE Power Electronics Specialists Conference, Jeju, Korea, 18–22 June 2006; pp. 1–6. [Google Scholar]
- Casarin, J.; Ladoux, P.; Martin, J.; Chauchat, B. AC/DC converter with medium frequency link for railway traction application. Evaluation of semiconductor losses and operating limits. In Proceedings of the SPEEDAM 2010, Pisa, Italy, 14–16 June 2010; pp. 1706–1711. [Google Scholar]
- Sabahi, M.; Hosseini, S.H.; Sharifian, M.B.; Goharrizi, A.Y.; Gharehpetian, G.B. Zero-voltage switching bi-directional power electronic transformer. IET Power Electron. 2010, 3, 818–828. [Google Scholar] [CrossRef]
- Tawfiq, K.B.; Abdou, A.F.; El-Kholy, E.E.; Shokralla, S.S. A modified space vector modulation algorithm for a matrix converter with lower total harmonic distortion. In Proceedings of the 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), Abu Dhabi, United Arab Emirates, 16–19 October 2016; pp. 1–4. [Google Scholar]
- Adhikari, J.; P, I.V.; Ponraj, G.; Panda, S.K. Modeling, Design, and Implementation of a Power Conversion System for Small-Scale High-Altitude Wind Power Generating System. IEEE Trans. Ind. Appl. 2017, 53, 283–295. [Google Scholar] [CrossRef]
- Dujic, D.; Zhao, C.; Mester, A.; Steinke, J.K.; Weiss, M.; Lewdeni-Schmid, S.; Chaudhuri, T.; Stefanutti, P. Power Electronic Traction Transformer-Low Voltage Prototype. IEEE Trans. Power Electron. 2013, 28, 5522–5534. [Google Scholar] [CrossRef]
- Syed, I.; Khadkikar, V. Replacing the Grid Interface Transformer in Wind Energy Conversion System with Solid-State Transformer. IEEE Trans. Power Syst. 2016. [Google Scholar] [CrossRef]
- She, X.; Huang, A.Q.; Wang, F.; Burgos, R. Wind Energy System With Integrated Functions of Active Power Transfer, Reactive Power Compensation, and Voltage Conversion. IEEE Trans. Ind. Electron. 2013, 60, 4512–4524. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, H.; Fu, S.; Shi, J.; He, X. Voltage and power balance control strategy for three-phase modular cascaded solid stated transformer. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016; pp. 1475–1480. [Google Scholar]
- Parseh, N.; Mohammadi, M. Solid State Transformer (SST) interfaced Doubly Fed Induction Generator (DFIG) wind turbine. In Proceedings of the 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2–4 May 2017; pp. 1084–1089. [Google Scholar]
- Kimura, N.; Morizane, T.; Iyoda, I.; Nakao, K.; Yokoyama, T. Solid state transformer investigation for HVDC transmission from offshore windfarm. In Proceedings of the 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, USA, 5–8 November 2017; pp. 574–579. [Google Scholar]
- Madhusoodhanan, S.; Tripathi, A.; Patel, D.; Mainali, K.; Kadavelugu, A.; Hazra, S.; Bhattacharya, S.; Hatua, K. Solid-State Transformer and MV Grid Tie Applications Enabled by 15 kV SiC IGBTs and 10 kV SiC MOSFETs Based Multilevel Converters. IEEE Trans. Ind. Appl. 2015, 51, 3343–3360. [Google Scholar] [CrossRef]
- Madhusoodhanan, S.; Mainali, K.; Tripathi, A.; Patel, D.; Kadavelugu, A.; Bhattacharya, S.; Hatua, K. Harmonic Analysis and Controller Design of 15 kV SiC IGBT Based Medium Voltage Grid Connected Three-Phase Three-Level NPC Converter. IEEE Trans. Power Electron. 2016. [Google Scholar] [CrossRef]
- Mostafa, M.A.; Abdou, A.F.; Abd El-Gawad, A.F.; El-Kholy, E.E. SBO-based selective harmonic elimination for nine levels asymmetrical cascaded H-bridge multilevel inverter. Aust. J. Electr. Electron. Eng. 2018. [Google Scholar] [CrossRef]
- Mostafa, M.A.; Abdou, A.F.; El-Gawad, A.F.A.; El-kholy, E.E. Comparison of multi-carrier and SHE-PWM for a nine levels cascaded H-bridge inverter. In Proceedings of the 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 19–21 December 2017; pp. 1483–1491. [Google Scholar]
- Falcones, S.; Mao, X.; Ayyanar, R. Topology comparison for Solid State Transformer implementation. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–8. [Google Scholar]
- Qin, H.; Kimball, J.W. A comparative efficiency study of silicon-based solid state transformers. In Proceedings of the 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 12–16 September 2010; pp. 1458–1463. [Google Scholar]
- Lai, J.s.; Maitra, A.; Goodman, F. Performance of a Distribution Intelligent Universal Transformer under Source and Load Disturbances. In Proceedings of the Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, Tampa, FL, USA, 8–12 October 2006; pp. 719–725. [Google Scholar]
- Bifaretti, S.; Zanchetta, P.; Watson, A.; Tarisciotti, L.; Clare, J.C. Advanced Power Electronic Conversion and Control System for Universal and Flexible Power Management. IEEE Trans. Smart Grid 2011, 2, 231–243. [Google Scholar] [CrossRef]
- Zhabelova, G.; Yavarian, A.; Vyatkin, V.; Huang, A.Q. Data center energy efficiency and power quality: An alternative approach with solid state transformer. In Proceedings of the IECON 2015 41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015; pp. 001294–001300. [Google Scholar]
- Amaral, F.V.; Parreiras, T.M.; Lobato, G.C.; Machado, A.A.P.; Pires, I.A.; Filho, B.D.J.C. Operation of a Grid-Tied Cascaded Multilevel Converter Based on a Forward Solid-State Transformer under Unbalanced PV Power Generation. IEEE Trans. Ind. Appl. 2018, 54, 5493–5503. [Google Scholar] [CrossRef]
- Liu, T.; Yang, X.; Chen, W.; Li, Y.; Xuan, Y.; Huang, L.; Hao, X. Design and implementation of high efficiency control scheme of dual active bridge based 10kV/1MW solid state transformer for PV application. IEEE Trans. Power Electron. 2018. [Google Scholar] [CrossRef]
- Ortiz, J.W.K.A.G. Solid-state-transformers: Key components of future traction and smart grid systems. In Proceedings of the International Power Electronics Conference, Hiroshima, Japan, 18–21 May 2014. [Google Scholar]
- Watson, A.J.; Dang, H.; Mondal, G.; Clare, J.C.; Wheeler, P.W. Experimental implementation of a multilevel converter for power system integration. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2009; pp. 2232–2238. [Google Scholar]
- Hamed, H.A.; Abdou, A.F.; Acharya, S.; Moursi, M.S.E.; Kholy, E.E.E. A Novel Dynamic Switching Table Based Direct Power Control Strategy for Grid Connected Converters. IEEE Trans. Energy Convers. 2018, 33, 1086–1097. [Google Scholar] [CrossRef]
- Hamed, H.A.; Abdou, A.F.; Bayoumi, E.H.E.; Kholy, E.E.E. A Fast Recovery Technique for Grid-Connected Converters After Short Dips Using a Hybrid Structure PLL. IEEE Trans. Ind. Electron. 2018, 65, 3056–3068. [Google Scholar] [CrossRef]
- Khomfoi, S.; Tolbert, L.M. Power Electronics Handbook; Elsevier Inc.: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Islam, M.R.; Guo, Y.; Zhu, J. A High-Frequency Link Multilevel Cascaded Medium-Voltage Converter for Direct Grid Integration of Renewable Energy Systems. IEEE Trans. Power Electron. 2014, 29, 4167–4182. [Google Scholar] [CrossRef]
- Sanchez-Ruiz, A.; Mazuela, M.; Alvarez, S.; Abad, G.; Baraia, I. Medium Voltage-High Power Converter Topologies Comparison Procedure, for a 6.6 kV Drive Application Using 4.5 kV IGBT Modules. IEEE Trans. Ind. Electron. 2012, 59, 1462–1476. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, G.; Bhattacharya, S.; Huang, A.Q. Voltage and Power Balance Control for a Cascaded H-Bridge Converter-Based Solid-State Transformer. IEEE Trans. Power Electron. 2013, 28, 1523–1532. [Google Scholar] [CrossRef]
- Jiamin, X.; Yong, L.; Yijia, C.; Panasetsky, D.; Sidorov, D. Modeling and operating characteristic analysis of MMC-SST based shipboard power system. In Proceedings of the 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Xi’an, China, 25–28 October 2016; pp. 28–32. [Google Scholar]
- Szczesniak, P.; Kaniewski, J.; Jarnut, M. AC–AC power electronic converters without DC energy storage: A review. Energy Convers. Manag. 2015, 92, 483–497. [Google Scholar] [CrossRef]
- Gupta, R.K.; Castelino, G.F.; Mohapatra, K.K.; Mohan, N. A novel integrated three-phase, switched multi-winding power electronic transformer converter for wind power generation system. In Proceedings of the 2009 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 3–5 November 2009; pp. 4481–4486. [Google Scholar]
- Marzoughi, A.; Burgos, R.; Boroyevich, D.; Xue, Y. Investigation and comparison of cascaded H-bridge and modular multilevel converter topologies for medium-voltage drive application. In Proceedings of the IECON 2014 40th Annual Conference of the IEEE Industrial Electronics Society, Dallas, TX, USA, 29 October–1 November 2014; pp. 1562–1568. [Google Scholar]
- Wu, L.; Sheng, H.; Yanchao, C.; Shoudao, H. The control method of modular multi-level converter based on low and high frequency circulating current. In Proceedings of the 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 31 August–3 September 2014; pp. 1–6. [Google Scholar]
- Shi, J.; Gou, W.; Yuan, H.; Zhao, T.; Huang, A.Q. Research on voltage and power balance control for cascaded modular solid-state transformer. IEEE Trans. Power Electron. 2011, 26, 1154–1166. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Z.; Ericsen, T.; Raju, R.; Burgos, R.; Boroyevich, D. Advances in Power Conversion and Drives for Shipboard Systems. Proc. IEEE 2015, 103, 2285–2311. [Google Scholar] [CrossRef]
- Huang, A. Recent advances and applications of power electronics and motor drives - Power semiconductor devices. In Proceedings of the 2008 34th Annual Conference of IEEE Industrial Electronics, Orlando, FL, USA, 10–13 November 2008; pp. 28–29. [Google Scholar]
- Mainali, K.; Tripathi, A.; Madhusoodhanan, S.; Kadavelugu, A.; Patel, D.; Hazra, S.; Hatua, K.; Bhattacharya, S. A Transformerless Intelligent Power Substation: A three-phase SST enabled by a 15-kV SiC IGBT. IEEE Power Electron. Mag. 2015, 2, 31–43. [Google Scholar] [CrossRef]
- Ueda, T. Recent advances and future prospects on GaN-based power devices. In Proceedings of the 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 ECCE ASIA), Hiroshima, Japan, 18–21 May 2014; pp. 2075–2078. [Google Scholar]
- Pentland, W. Why the U.S. Military Is Falling in Love with Electric Vehicles. Forbes 2013. Available online: https://www.forbes.com/sites/williampentland/2013/09/08/why-the-u-s-military-is-enamored-of-electric-vehicles/#6e851e8a5466 (accessed on 15 October 2018).
- Friedrichs, P. Future of Wide Band Gap Power Semiconductors. In Proceedings of the European Conference on Power Electronics and Applications, Karlsruhe, Germany, 5–9 September 2016. [Google Scholar]
- Ji, I.H.; Wang, S.; Lee, B.; Ke, H.; Misra, V.; Huang, A.Q. Design and fabrication of high current AlGaN/GaN HFET for Gen III solid state transformer. In Proceedings of the 2014 IEEE Workshop on Wide Bandgap Power Devices and Applications, Knoxville, TN, USA, 13–15 October 2014; pp. 63–65. [Google Scholar]
- Abedini, A.; Lipo, T. A novel topology of solid state transformer. In Proceedings of the 2010 1st Power Electronic & Drive Systems & Technologies Conference (PEDSTC), Tehran, Iran, 17–18 February 2010; pp. 101–105. [Google Scholar]
- AS-2374. Power Transformers. In Minimum Energy Performance Standards (MEPS) Requirements for Distribution Transformers; Australian Standard: Sydney, Australia, 2003. [Google Scholar]
- Grider, D.; Das, M.; Agarwal, A.; Palmour, J.; Leslie, S.; Ostop, J.; Raju, R.; Schutten, M.; Hefner, A. 10 kV/120 A SiC DMOSFET half H-bridge power modules for 1 MVA solid state power substation. In Proceedings of the 2011 IEEE Electric Ship Technologies Symposium, Alexandria, VA, USA, 10–13 April 2011; pp. 131–134. [Google Scholar]
- Zhao, B.; Song, Q.; Liu, W. A Practical Solution of High-Frequency-Link Bidirectional Solid-State Transformer Based on Advanced Components in Hybrid Microgrid. IEEE Trans. Ind. Electron. 2015, 62, 4587–4597. [Google Scholar] [CrossRef]
- Mainali, K.; Tripathi, A.; Patel, D.C.; Bhattacharya, S.; Challita, T. Design, measurement and equivalent circuit synthesis of high power HF transformer for three-phase composite dual active bridge topology. In Proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition APEC 2014, Fort Worth, TX, USA, 16–20 March 2014; pp. 342–349. [Google Scholar]
- Besselmann, T.; Mester, A.; Dujic, D. Power Electronic Traction Transformer: Efficiency Improvements Under Light-Load Conditions. IEEE Trans. Power Electron. 2014, 29, 3971–3981. [Google Scholar] [CrossRef]
- Chen, H.; Divan, D. Soft-switching solid state transformer (S4T). In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 18–22 September 2016; pp. 1–10. [Google Scholar]
- She, X.; Yu, X.; Wang, F.; Huang, A.Q. Design and Demonstration of a 3.6-Kv–120-V/10-kVA Solid-State Transformer for Smart Grid Application. IEEE Trans. Power Electron. 2014, 29, 3982–3996. [Google Scholar] [CrossRef]
- Kang, M.; Enjeti, P.N.; Pitel, I.J. Analysis and design of electronic transformers for electric power distribution system. IEEE Trans. Power Electron. 1999, 14, 1133–1141. [Google Scholar] [CrossRef]
- Ng, C.H.; Parker, M.A.; Ran, L.; Tavner, P.J.; Bumby, J.R.; Spooner, E. A Multilevel Modular Converter for a Large, Light Weight Wind Turbine Generator. IEEE Trans. Power Electron. 2008, 23, 1062–1074. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Chai, J.; Li, Y. A Transformer-Less High-Power Converter for Large Permanent Magnet Wind Generator Systems. IEEE Trans. Sustain. Energy 2012, 3, 318–329. [Google Scholar] [CrossRef]
- Yuan, X.; Li, Y.; Chai, J. A transformerless modular permanent magnet wind generator system with minimum generator coils. In Proceedings of the 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Palm Springs, CA, USA, 21–25 February 2010; pp. 2104–2110. [Google Scholar]
- Ackermann, T. Wind Power in Power Systems; John Wiley & Sons Ltd.: Weinheim, Germany, 2012. [Google Scholar]
- Yunus, A.M.S.; Masoum, M.A.S.; Abu-Siada, A. Application of SMES to Enhance the Dynamic Performance of DFIG During Voltage Sag and Swell. IEEE Trans. Appl. Supercond. 2012, 22, 5702009. [Google Scholar] [CrossRef]
- Abdou, A.F.; Abu-Siada, A.; Pota, H.R. Damping of subsynchronous oscillations and improve transient stability for wind farms. In Proceedings of the 2011 IEEE PES Innovative Smart Grid Technologies, Perth, Australia, 13–16 November 2011; pp. 1–6. [Google Scholar]
- Abdou, A.F.; Abu-Siada, A.; Pota, H.R. Application of a STATCOM for damping subsynchronous oscillations and transient stability improvement. In Proceedings of the AUPEC 2011, Brisbane, Australia, 25–28 September 2011; pp. 1–5. [Google Scholar]
- Alharbi, Y.M.; Siada, A.A.; Abdou, A.F. Application of UPFC on stabilizing torsional oscillations and improving transient stability. In Proceedings of the 2013 Australasian Universities Power Engineering Conference (AUPEC), Hobart, Australia, 29 September–3 October 2013; pp. 1–4. [Google Scholar]
- Tawfiq, K.B.; Abdou, A.F.; Kholy, E.; Shokrall, S.S. Application of matrix converter connected to wind energy system. In Proceedings of the 2016 Eighteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 27–29 December 2016; pp. 604–609. [Google Scholar]
- Siyoung, K.; Seung-Ki, S.; Lipo, T.A. AC/AC power conversion based on matrix converter topology with unidirectional switches. IEEE Trans. Ind. Appl. 2000, 36, 139–145. [Google Scholar] [CrossRef]
- Abdou, A.F.; Abu-Siada, A.; Pota, H.R. Improving the low voltage ride through of doubly fed induction generator during intermittent voltage source converter faults. J. Renew. Sustain. Energy 2013, 5, 043110. [Google Scholar] [CrossRef]
- Abdou, A.F.; Abu-Siada, A.; Pota, H.R. Application of STATCOM to improve the LVRT of DFIG during RSC fire-through fault. In Proceedings of the 2012 22nd Australasian Universities Power Engineering Conference (AUPEC), Bali, Indonesia, 26–29 September 2012; pp. 1–6. [Google Scholar]
- Gao, R.; Husain, I.; Wang, F.; Huang, A.Q. Solid-state transformer interfaced PMSG wind energy conversion system. In Proceedings of the 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015; pp. 1310–1317. [Google Scholar]
- Papathanassiou, M.T.S. A review of grid code technical requirements for wind farms. IET Renew. Power Gener. 2008, 3, 308–332. [Google Scholar]
- Erlich, I.; Winter, W.; Dittrich, A. Advanced grid requirements for the integration of wind turbines into the German transmission system. In Proceedings of the 2006 IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 18–22 June 2006. [Google Scholar]
- Pannell, G.; Zahawi, B.; Atkinson, D.J.; Missailidis, P. Evaluation of the Performance of a DC-Link Brake Chopper as a DFIG Low-Voltage Fault-Ride-Through Device. IEEE Trans. Energy Convers. 2013, 28, 535–542. [Google Scholar] [CrossRef]
- Causebrook, A.; Atkinson, D.J.; Jack, A.G. Fault Ride-Through of Large Wind Farms Using Series Dynamic Braking Resistors (March 2007). IEEE Trans. Power Syst. 2007, 22, 966–975. [Google Scholar] [CrossRef]
- Huang, A.Q. Medium-Voltage Solid-State Transformer: Technology for a Smarter and Resilient Grid. IEEE Ind. Electron. Mag. 2016, 10, 29–42. [Google Scholar] [CrossRef]
- Yao, F.; Dong, Z.Y.; Meng, K.; Xu, Z.; Iu, H.H.C.; Wong, K.P. Quantum-Inspired Particle Swarm Optimization for Power System Operations Considering Wind Power Uncertainty and Carbon Tax in Australia. IEEE Trans. Ind. Inform. 2012, 8, 880–888. [Google Scholar] [CrossRef]
- Rosario Llorente Iglesias. Mónica Aguado Alonso Power electronics evolution in wind turbines—A market-based analysis. Renew. Sustain. Energy Rev. 2011, 15, 4982–4993. [Google Scholar] [CrossRef]
- John, J.S. Gridco Raises $8M for the Digital-Powered Smart Grid; Greentech Media: Boston, MA, USA, 2012. [Google Scholar]
- Kanellos, M. Next for the Grid: Solid State Transformers; Greentech Media: Boston, MA, USA, 2011. [Google Scholar]
- Jock O’Callaghan, M.C.; Mezger, S.; Isles, K.; Knox, C.; Welsh, L.A. Utility of the Future (A Customer-Led Shift in the Electricity Sector); PWC: London, UK, 2014. [Google Scholar]
- Zhang, J.; Wang, W.; Bhattacharya, S. Architecture of solid state transformer-based energy router and models of energy traffic. In Proceedings of the 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 16–20 January 2012; pp. 1–8. [Google Scholar]
- Yi, X.; Jianhua, Z.; Wenye, W.; Juneja, A.; Bhattacharya, S. Energy router: Architectures and functionalities toward Energy Internet. In Proceedings of the 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), Brussels, Belgium, 17–20 October 2011; pp. 31–36. [Google Scholar]
- Jie, Y.; Zaijun, W.; Bhattacharya, S. Power dispatch strategy in microgrid integrated with solid state transformer. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5. [Google Scholar]
- Dohn, R.L. The Business Case for Microgrids; Siemens AG: Berlin, Germany, 2011. [Google Scholar]
- Hambridge, S.; Huang, A.Q.; Yu, R. Solid State Transformer (SST) as an energy router: Economic dispatch based energy routing strategy. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015; pp. 2355–2360. [Google Scholar]
- Wang, D.; Mao, C.; Lu, J.; Lee, W.J. Electronic power transformer to secure the power supply of a mission critical microgrid. In Proceedings of the 2014 IEEE Industry Application Society Annual Meeting, Vancouver, BC, Canada, 5–9 October 2014; pp. 1–8. [Google Scholar]
Expandability | Capacitors Size | Inductors No. | Transformers No. | Semiconductors No | |
---|---|---|---|---|---|
Neutral point clamped | No | Low | Low | Low | High |
Flying capacitor | No | Low | Low | Low | Low |
H-bridge cascaded | Yes | Medium | Low | High | Low |
MMC | Yes | High | High | Low | Low |
Year | Ref. | Main Focus |
---|---|---|
2018 | [4] | Proposes a medium-frequency SST-based grid interface for high-power multi pulse rectifiers. |
[15] | Reviews the SST for the traction technology in high-speed trains. | |
[43] | Deals with the control strategy to improve dual active bridge efficiency of SSTs for PV application. | |
2017 | [13] | Introduces optimised parameters selection for the fabrication of compact and economical pulse transformer using split core topology. |
[19] | Introduces a topology called dynamic-current for bidirectional SSTs with a minimal device count. | |
[31] | Presents the application of a SST connected to a wind turbine-based doubly fed induction generator. Advantages of employing SSTs over conventional magnetic core transformer are detailed. | |
[32] | Employs an SST for HVDC transmission of an offshore windfarm. An experimental setup is developed and comparison of 50 Hz, 400 Hz, and 1000 Hz SST operation is conducted. Dependency of the transformer losses on core materials and frequency is also investigated. | |
2016 | [2] | Proposes a transformerless-based SST is proposed for the intelligent power management applications. |
[8] | Introduces the origins and evolution of key concepts of SSTs. | |
[12] | Presents the analysis and design of a 166 kW/20 kHz dc-dc converter of a series-resonant type along with practical implementation. | |
[28] | Proposes a configuration that combines the doubly fed induction generator-based wind turbine and SST operation to enhance the overall operation and performance. | |
[30] | Proposes a systematic control strategy for the three-phase modular cascaded SST. | |
[52] | Proposes a modular multilevel type SST-based topology of shipboard power system to improve the DC bus voltage stability and the power quality. | |
[71] | Proposes a topology for a fully bidirectional soft-switching solid-state transformer to interface two- or multi-terminal dc, single- or multiphase ac systems. | |
[91] | Discusses the needs and challenges in developing the medium-voltage SST technology for the next-generation of distribution grids. |
STRENGTHS | WEAKNESSES |
-Small size -Power factor correction -Reactive power support -AC/DC integration -Eliminates oil -Smart grid and economic dispatch | -High cost -Electromagnetic interference -Harmonic injection-Low power rating -Unproven reliability -Semi-conductors supply shortage |
OPPORTUNITIES | THREATS |
-Advances in high voltage semiconductors and mass production. -Higher penetration by renewables due to mature technology and competitive price -Government quotas and international climate agreements to reduce CO2 -Reduction in price due to mass production -Deregulation of the electricity grid requiring smart dispatch of energy and increased controllability. -Stringent standards for FRT -Rise of the electric vehicle -Large manufacturers (ex: ABB) investing in R&D | -Cost remains too high compared to benefits -Reduction in government subsidies for electrical utilities -Roll back of existing environmental accords -Stall in the development of high power semiconductors -Limited penetration of renewables due to low fossil fuel prices or CO2 capture technologies (clean coal) -Global economic recession |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Siada, A.; Budiri, J.; Abdou, A.F. Solid State Transformers Topologies, Controllers, and Applications: State-of-the-Art Literature Review. Electronics 2018, 7, 298. https://doi.org/10.3390/electronics7110298
Abu-Siada A, Budiri J, Abdou AF. Solid State Transformers Topologies, Controllers, and Applications: State-of-the-Art Literature Review. Electronics. 2018; 7(11):298. https://doi.org/10.3390/electronics7110298
Chicago/Turabian StyleAbu-Siada, Ahmed, Jad Budiri, and Ahmed F. Abdou. 2018. "Solid State Transformers Topologies, Controllers, and Applications: State-of-the-Art Literature Review" Electronics 7, no. 11: 298. https://doi.org/10.3390/electronics7110298
APA StyleAbu-Siada, A., Budiri, J., & Abdou, A. F. (2018). Solid State Transformers Topologies, Controllers, and Applications: State-of-the-Art Literature Review. Electronics, 7(11), 298. https://doi.org/10.3390/electronics7110298