A Synthetic Aperture Radar (SAR)-Based Technique for Microwave Imaging and Material Characterization
Abstract
:1. Introduction
2. Methodology
2.1. Synthetic Aperture Radar imaging
2.2. Constitutive Parameters Estimation and Range Correction
3. Results
3.1. Measurement Setup
3.2. Wax Candle
3.3. Plastic Bottle Filled with Sand
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Deng, Y.; Liu, X. Electromagnetic Imaging Methods for Nondestructive Evaluation Methods. Sensors 2011, 11, 11774–11808. [Google Scholar] [CrossRef] [PubMed]
- Cooper, K.B.; Dengler, R.J.; Llombart, N.; Thomas, B.; Chattopadhyay, G.; Siegel, P.H. THz imaging radar for standoff personnel screening. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 169–182. [Google Scholar] [CrossRef]
- Álvarez, Y.; García-Fernández, M.; Poli, L.; García-González, C.; Rocca, P.; Massa, A.; Las-Heras, F. Inverse Scattering for Monochromatic Phaseless Measurements. IEEE Trans. Instrum. Meas. 2017, 66, 45–60. [Google Scholar] [CrossRef] [Green Version]
- García-Fernández, M.; Álvarez-López, Y.; Arboleya-Arboleya, A.; González-Valdés, B.; Rodríguez-Vaqueiro, Y.; Las-Heras Andrés, F.; Pino García, A. Synthetic Aperture Radar Imaging System for Landmine Detection Using a Ground Penetrating Radar on Board a Unmanned Aerial Vehicle. IEEE Access 2018, 6, 45100–45112. [Google Scholar] [CrossRef]
- Narayanan, R.M.; Gebhardt, E.T.; Broderick, S.P. Through-Wall Single and Multiple Target Imaging Using MIMO Radar. Electronics 2017, 6, 70. [Google Scholar] [CrossRef]
- Elahi, M.A.; O’Loughlin, D.; Lavoie, B.R.; Glavin, M.; Jones, E.; Fear, E.C.; O’Halloran, M. Evaluation of Image Reconstruction Algorithms for Confocal Microwave Imaging: Application to Patient Data. Sensors 2018, 18, 1678. [Google Scholar] [CrossRef] [PubMed]
- Zhuge, X.; Yarovoy, A.G. A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection. IEEE Trans. Geosci. Remote Sens. 2011, 49, 509–518. [Google Scholar] [CrossRef]
- Soumekh, M. Bistatic synthetic aperture radar inversion with application in dynamic object imaging. IEEE Trans. Signal Process. 1991, 39, 2044–2055. [Google Scholar] [CrossRef]
- Lopez-Portugues, M.; Alvarez-Lopez, Y.; Lopez-Fernandez, J.A.; Garcia-Gonzalez, C.; Ayestaran, R.G.; Las-Heras Andres, F. A multi-GPU sources reconstruction method for imaging applications. Prog. Electromagn. Res. 2013, 136, 703–724. [Google Scholar] [CrossRef]
- Lin, C.Y.; Kiang, Y.W. Inverse scattering for conductors by the equivalent source method. IEEE Trans. Antennas Propag. 1996, 44, 310–316. [Google Scholar] [CrossRef]
- Woten, D.; Hajihashemi, M.R.; Hassan, A.M.; El-Shenawee, M. Experimental microwave validation of level set reconstruction algorithm. IEEE Trans. Antennas Propag. 2010, 58, 230–233. [Google Scholar] [CrossRef]
- Eskandari, A.R.; Naser-Moghaddasi, M.; Eskandari, M. Reconstruction of Shape and Position for Scattering Objects by Linear Sampling Method. Int. J. Soft Comput. Eng. 2012, 2, 2231–2307. [Google Scholar]
- Caorsi, S.; Donelli, M.; Massa, A. Detection, location, and imaging of multiple scatterers by means of the iterative multiscaling method. IEEE Trans. Microw. Theory Tech. 2004, 52, 1217–1228. [Google Scholar] [CrossRef]
- Rocca, P.; Benedetti, M.; Donelli, M.; Franceschini, D.; Massa, A. Evolutionary optimization as applied to inverse scattering problems. Inverse Probl. 2009, 25, 123003. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Valdes, B.; Alvarez, Y.; Martinez-Lorenzo, J.A.; Las-Heras, F.; Rappaport, C.M. On the Combination of SAR and Model Based Techniques for High-Resolution Real-Time Two-Dimensional Reconstruction. IEEE Trans. Antennas Propag. 2014, 62, 5180–5189. [Google Scholar] [CrossRef] [Green Version]
- Fallahpour, M.; Case, J.T.; Ghasr, M.T.; Zoughi, R. Piecewise and Wiener filter-based SAR techniques for monostatic microwave imaging of layered structures. IEEE Trans. Antennas Propag. 2014, 62, 282–294. [Google Scholar] [CrossRef]
- Laviada, J.; Wu, B.; Ghars, M.T.; Zoughi, R. Nondestructive Evaluation of Microwave-Penetrable Pipes by Synthetic Aperture Imaging Enhanced by Full-Wave Field Propagation Model. IEEE Trans. Instrument. Meas. 2018, 1–8, in press. [Google Scholar] [CrossRef]
- Robinson, D.A.; Jones, S.B.; Wraith, J.M.; Or, D.; Friedman, S.P. A Review of Advances in Dielectric and Electrical Conductivity Measurement in Soils Using Time Domain Reflectometry. Vadose Zone J. 2003, 2, 444–475. [Google Scholar] [CrossRef]
- Garret, J.D.; Fear, E.C. Average Dielectric Property Analysis of Complex Breast Tissue with Microwave Transmission Measurements. Sensors 2015, 15, 1199–1216. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.; Borgese, M.; Degiorgi, M.; Monorchio, A. Electromagnetic Characterisation of Materials by Using Transmission/Reflection (T/R) Devices. Electronics 2017, 6, 95. [Google Scholar] [CrossRef]
- Gonzalez-Valdes, B.; Alvarez-Lopez, Y.; Martinez-Lorenzo, J.A.; Las Heras, F.; Rappaport, C.M. SAR processing for profile reconstruction and characterization of dielectric objects on the human body surface. Prog. Electromagn. Res. 2013, 138, 269–282. [Google Scholar] [CrossRef]
- Álvarez-López, Y.; García-Fernández, M.; Arboleya, A.; González-Valdés, B.; Rodríguez-Vaqueiro, Y.; Las-Heras, F.; Pino García, A. SAR-based technique for soil permittivity estimation. Int. J. Remote Sens. 2017, 38, 5168–5185. [Google Scholar] [CrossRef]
- López-Rodríguez, P.; Escot-Bocanegra, D.; Poyatos-Martínez, D.; Weinmann, F. Comparison of Metal-Backed Free-Space and Open-Ended Coaxial Probe Techniques for the Dielectric Characterization of Aeronautical Composites. Sensors 2016, 16, 967. [Google Scholar] [CrossRef] [PubMed]
- Arboleya, A. Novel XYZ Scanner-Based Radiation and Scattering Measurement Techniques for Antenna Diagnostics and Imaging Applications. Ph.D. Thesis, Universidad de Oviedo, Oviedo, Spain, 2016. Available online: http://digibuo.uniovi.es/dspace/bitstream/10651/40222/1/TD_AnaArboleya.pdf (accessed on 12 October 2018).
- Bell Electronics. Narda 639 Standard Gain Horn, 12.4 to 18 GHz. Available online: https://www.bellnw.com/manufacturer/Narda/639.htm (accessed on 5 October 2018).
- Keysight. N5247A PNA-X Microwave Network Analyzer. Available online: https://www.keysight.com/en/pdx-x201825-pn-N5247A/pna-x-microwave-network-analyzer-67-ghz?cc=EN&lc=eng (accessed on 5 October 2018).
- Bayrajdar, H. Complex permittivity, complex permeability and microwave absorption properties of ferrite-paraffin polymer composites. J. Magn. Magn. Mater. 2011, 323, 1882–1885. [Google Scholar] [CrossRef]
- Abdelgwad, A.H.; Said, T.M. Measured dielectric Permittivity of Contaminated sandy soils at Microwave Frequency. J. Microw. Optoelectron. Electromagn. Appl. 2016, 15, 115–122. [Google Scholar] [CrossRef]
Material | Frequency (GHz) | Permittivity (εr) | Conductivity (σ) (S/m) | Method | Reference |
---|---|---|---|---|---|
Wax (paraffin) | 12–18 | 2.3 ± 0.2 | 0.06 ± 0.02 | Backpropagation SAR | This contribution |
Wax (paraffin) | 9–15 | 2.2 | 0.35 | X-ray powder diffraction analysis | [27] |
Wax (paraffin) | 9.4 | 2.17 | 0.03 | Model-based monochromatic inverse scattering | [3] |
Sand | 12–18 | 2.5 ± 0.2 | 0.08 ± 0.02 | Backpropagation SAR | This contribution |
Sand | 3–6 | [2.7, 3.5] | [0.27, 0.4] | Backpropagation SAR, with reference target | [22] |
Sand | Up to 10 | 2.4 ± 0.2 | 0.02 ± 0.005 | Coaxial probe | [28] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez López, Y.; García Fernández, M.; Grau, R.; Las-Heras, F. A Synthetic Aperture Radar (SAR)-Based Technique for Microwave Imaging and Material Characterization. Electronics 2018, 7, 373. https://doi.org/10.3390/electronics7120373
Álvarez López Y, García Fernández M, Grau R, Las-Heras F. A Synthetic Aperture Radar (SAR)-Based Technique for Microwave Imaging and Material Characterization. Electronics. 2018; 7(12):373. https://doi.org/10.3390/electronics7120373
Chicago/Turabian StyleÁlvarez López, Yuri, María García Fernández, Raphael Grau, and Fernando Las-Heras. 2018. "A Synthetic Aperture Radar (SAR)-Based Technique for Microwave Imaging and Material Characterization" Electronics 7, no. 12: 373. https://doi.org/10.3390/electronics7120373
APA StyleÁlvarez López, Y., García Fernández, M., Grau, R., & Las-Heras, F. (2018). A Synthetic Aperture Radar (SAR)-Based Technique for Microwave Imaging and Material Characterization. Electronics, 7(12), 373. https://doi.org/10.3390/electronics7120373